
 
BSR/ASHRAE Addendum ap to 

 ANSI/ASHRAE Standard 135-2010 
 

_____________________Advisory Public 
Review Draft 

Proposed Addendum ap to Standard 

135-2010, BACnet® - A Data 

Communication Protocol for Building 

Automation and Control Networks 
 

First Advisory Public Review (March 2012) 
(Draft shows Proposed Changes to Current Standard) 

 
This draft has been recommended for public review by the responsible project committee. To submit a comment on this 

proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and 

access the online comment database. The draft is subject to modification until it is approved for publication by the Board of 

Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE 

website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at 

www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).  
 

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form 

available on the ASHRAE website, www.ashrae.org.  
 

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, 

warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims 

such.  
 
© 2012 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this 
document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-
636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org. 
 
ASHRAE, 1791 Tullie Circle, NE, Atlanta GA  30329-2305 
 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 2 
 
 

[This foreword and the “rationales” on the following pages are not part of this standard. They are merely 
informative and do not contain requirements necessary for conformance to the standard.]  

 
 

FOREWORD 
 
The purpose of this addendum is to present a proposed change for advisory public review. These modifications are the result 
of change proposals made pursuant to the ASHRAE continuous maintenance procedures and of deliberations within Standing 
Standard Project Committee 135. The proposed changes are summarized below. 
 
135-2010ap-1 Define Application Interfaces, p. 2 
135-2010ap-2 Enhance Structured View Object, p. 9 
135-2010ap-3 Add New Service ReadPropertyIndirect, p. 13 
135-2010ap-4 Define Machine-Readable Definitions for Application Interfaces, p. 20 
 
In the following document, language to be added to existing clauses of ANSI/ASHRAE 135-2010 and Addenda is indicated 
through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be 
added, plain type is used throughout. Only this new and deleted text is open to comment at this time. All other material in this 
addendum is provided for context only and is not open for public review comment except as it relates to the proposed 
changes.  
 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 3 
 
 

135-2010am-1 Define Application Interfaces 
 
Rationale 
 
Clause 12 defined a number of useful common abstractions for the building blocks of modern control systems.  
However, this leaves an unaddressed concept of "application" that sits above this building block level. A high level 
application, like "Air Handler" may be composed of many of the Clause 12 objects, and may also itself be 
composed of other applications like variable frequency drives for its fans. 
 
The Structured View object was created to address this need for a higher level composition of objects.  However, 
there was no mechanism provided to express conformance to a "standard view" and no means to define such a 
standard view.  This proposal addresses both those needs as well as adding more flexibility to the Structured 
View to address varied deployment scenarios. 
 
In this document, an application interface is a definition of the characteristics of a BACnet interface for a particular 
type of application or equipment function and its interoperability requirements.  Certain types of specialized 
mechanical equipment that have similar characteristics across a range of vendors and implementations, such as 
variable frequency drives and thermostats, could be good candidates for the development of standard application 
interfaces. 
 
A single Clause 12 object is not always the best way to present an application interface.  Some vendor 
implementations do not rely on single objects to represent the aggregate data points required for the particular 
application; instead those implementations use some combination of standard and/or non-standard object types 
to represent the collection of values that constitute the application interface. Some application interfaces, 
especially those that represent complex devices or sub-systems, might even span multiple BACnet devices. 
 
Regardless of which deployment method is followed in order to represent the data points, it is still necessary to 
describe the functional requirements of the application in terms of a set of data values and their characteristics 
and behaviors. To simplify the process of developing application interfaces, it is desirable to abstract the 
functional specification and table of data values into individually publishable documents. 
 
The solution outlined here, and in other sections of this addendum, provides: 
- a human readable (document) format for the definition of interfaces 
- a machine readable (XML) format for the definition of interfaces 
- a BACnet protocol discoverable method of representing an instance of an interface (Structured View) 
- a new service for efficient traversal of interface instances (ReadPropertyIndirect) 
 
 
 
[Add to Clause 3.2, p. 2] 
 
application: a collection of logical functionality within a system. A particular application may be contained or realized 
within a single device or may involve multiple devices acting together. Examples of applications include, but are not limited 
to: air handlers, variable frequency drives, rooftop units, special mechanical equipment, stairwell pressurization, room 
lighting, zone and building access control, and energy management. 
 
application interface: a mechanism for defining the BACnet-visible characteristics of particular applications, and their 
description in both normative and informative terms. That functionality includes: 

(a) a standard name that uniquely identifies the application interface; 
(b) the version of the application interface; 
(c) a description of an object model for realizing that functionality including expected ranges and datatypes of  

parametric values provided to or by the interface; 
(d) a description of the functional behavior provided by the interface; 
(e) supportive informative diagrams, tables, and background text. 

 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 4 
 
 

[Add new Clause 26] 

26 APPLICATION INTERFACES 

Applications are collections of logical functionality within a system. A particular application may be contained or realized 
within a single device or may involve multiple devices acting together. An application may represent a program that 
implements a particular strategy, for example, load control, energy management, or control of a specific kind of device. 
Applications may also represent simple or complex physical equipment. As an abstract concept, applications can be 
standardized just as information objects can be in BACnet. 
 
BACnet’s standardized set of data structures, called objects, provide an interface for sharing information and control within 
and between building systems. BACnet objects may be used to exchange information through both standard object types 
(Clause 12) and non-standardized proprietary object types. However, it is common for many kinds of building system devices 
to contain many individual operating parameters and other kinds of information or control and configuration adjustments. As 
a result, the complete functionality of a given building system device may require many separate object property values. 
Individual implementations may choose to aggregate similar functionality in different groupings or object models. 

An Application Interface is a standard mechanism in BACnet for defining the characteristics of particular applications and 
their description in both normative and informative terms. That functionality includes: 

(a) a standard name for an Application Interface or functionality set; 
(b) the version of the application interface; 
(c) a description of an object model for realizing the functionality of the application interface including expected 

ranges and datatypes of parametric values provided to or by the interface; 
(d) a description of the functional behavior provided; 
(e) supporting informative diagrams, tables, and background text.  

 
The functionality of a given application interface may include the use of standard Clause 12 object types applied in specific 
ways, or it may be that no specific consensus exists regarding a single object model. If no single object is appropriate, the 
application interface provides a means of indirectly documenting a collection of related object property values that are 
appropriate to the application. These aggregated values may or may not exist in a single Clause 12 object in a given 
application, and the application interface provides a mechanism for discovering the binding of a particular value in the 
context of that application at runtime.  
 
When there is consensus about the general behavior of an application functionality set, but no consensus on a specific object 
model, the deferred binding mechanism provides a method for standardizing those parts of the application that can be agreed 
upon, and more flexibility in representing the object model parameters.  The adoption of a more abstract standard for a given 
application may spur industry support for, and more common use of, that application interface standard which may in turn 
lead to eventual consensus about the object model, which may lead to proposals to create new Clause 12 object types that 
capture the defacto common usage of a more indirect application interface normative specification. 
 
As a result, Clause 12 objects have a purpose that is independent of application interfaces and in no way mutually exclusive 
with them. 
 
An application interface may not require an object model at all, and may simply describe a behavior or procedure that should 
be implemented or followed in a consistent manner by applications that want to implement that standard interface. The 
interface may define, for example, the use of specific BACnet services, or common data file formats, or procedures. In short, 
an application interface may define any common collection of functionality that is used to achieve a particular purpose so as 
to standardize the way that two or more BACnet devices may interact. Since application interfaces are application-driven 
instead of communication-driven, they provide another dimension for standardization and interoperability. 

26.1 Application Interface Catalog 

All standard Application Interfaces shall be documented in Annex B using the format described in this clause. 

26.2 Application Interface Name 

Each application interface shall be associated with a standardized formal name. To ensure uniqueness, an Application 
Interface Name shall begin with a vendor identification code (see Clause 23) in base-10 integer format, followed by a 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 5 
 
 

hyphen. All subsequent characters are administered by the organization registered with that vendor identification code. The 
vendor identification code that prefixes the interface name shall indicate the organization that publishes and maintains the 
interface definition. This vendor identification code need not have any relationship to the Vendor_Identifier of the device that 
implements this application interface.  
 
For example, a “Variable Frequency Drive” Application Interface standardized by ASHRAE might be named “0-VFD,” and 
the second version of a “Rooftop Unit” Application Interface defined by the organization that has vendor identification code 
555 might be named “555-Rooftop Unit.2.” 

26.3 Application Interface Purpose 

Each application interface shall include a descriptive summary of the purpose or functionality provided by that interface. This 
may include diagrams or an overview when appropriate. 

26.4 Interface Table 

Each application interface that makes use of an object model shall define one Interface Table that lists one or more 
information values (data points) that represent inputs to the application interface (for control or configuration) or outputs 
from the interface (results and status). The binding of a given instance of an application interface to specific object properties 
that provide the interface table values will generally occur at runtime.  
 
The following information shall be provided for each value in an Interface Table: 

(a) numeric ID (required) 
(b) name for the value (required) 
(c) datatype for the value (required) 
(d) conformance code (required) 
(e) range restrictions 
(f) engineering units (if applicable) 
(g) volatility 
(h) usage 

 
An example of an Interface Table for a hypothetical pump controller with an optional power meter interface is shown in 
Table 26-1.  See below for a description of each column of the table. 
 

Table 26-1. Example Interface Table 
ID Name Datatype Conf. 

Code 
Range/Units Vol Usage 

1 Enabled Monitor BINARY R 1 = "Enabled", 0 = "Disabled" V Status 
2 Fault Monitor BINARY R 1 = "Fault", 0 = "No Fault" V Status 
3 Flow Rate GPM FLOAT C GPM V Status 
4 Flow Rate LPM FLOAT C LPM V Status 
5 Running Seconds UNSIGNED OW Seconds N Status 
6 Enable-Disable Command BINARY RP 1 = "Enable", 0 = "Disable" V Control 
7 Reset Request BINARY RW Off (0) to On (1) transition 

initiates reset 
V Self-

Clearing 
8 Most Recent Fault Code      Unsigned16 R (0-65535) V Status 
9 Flow Rate Setpoint GPM FLOAT CP GPM V Control 
10 Flow Rate Setpoint LPM FLOAT CP LPM V Control 
11 Power Meter Interface O 555-POWER  Status 

Notes for Table 26-1: 
1. At least one of the values with IDs 3 and 4 must be implemented. 
2. Exactly one of the values with IDs 9 and 10 must be implemented. 

 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 6 
 
 

26.4.1 ID 

Each interface table value shall be assigned a positive integer that uniquely identifies the value.  Values shall be listed in the 
table in numeric order, beginning with 1. 
 
An important application of the numeric ID is to be the index of an array that contains a run-time reference to the BACnet 
property or array element that contains the value in a real device.  See Clause 26.6.1. 

26.4.2 Name 

Each interface table value shall be given a descriptive name that is unique within the interface and that describes its function, 
e.g., "Reset Request." The name may be translated or otherwise localized as necessary. 

26.4.3 Datatype 

Each interface table value shall specify the type of data that the value must provide.  The following datatypes are allowed: 
 

(a) Any Clause 21 Application Type (a.k.a. primitive type), except NULL 
(b) Any Clause 21 Base Type (a.k.a. constructed type) 
(c) A flexible type, as described below 
(d) An Application Interface, indicated by "Interface" 
(e) A one-dimensional array of any permitted Clause 21 datatype or flexible type, indicated by "Array of XXX" 
(f) A list of any permitted Clause 21 datatype or flexible type, indicated by "List of XXX" 
 

Flexible types are intended to allow implementers some flexibility in choosing a datatype to represent a value, although this 
puts some additional burden on consumers of an Application Interface.  If the Interface Table specifies a flexible type for a 
value, a device implementing the value may choose any of the permitted implementation datatypes, as long as the chosen 
datatype is capable of meeting all of the other requirements of the value (range, precision, etc.).  The flexible types are 
described in Table 26-2. 
 

Table 26-2. Flexible Types 
Flex. Type Range of Values Permitted Implementation Datatypes 

BINARY 0 or 1 BACnetBinaryPV, Signed Integer, or Unsigned 
Integer 

BOOL FALSE or TRUE Boolean (recommended); alternatively 0 (representing 
FALSE) or a non-zero value (representing TRUE), 
returned as Unsigned Integer or Signed Integer 

ENUM 1, 2, 3, 4… Enumerated, Unsigned Integer, or Signed Integer 
FLOAT Any real number  Real (recommended) or Double; Signed Integer or 

Unsigned Integer may be used in some cases 
SIGNED Integer Signed Integer (recommended); alternatively Real or 

Double 
UNSIGNED Non-negative 

integer 
Unsigned Integer (recommended); alternatively 
Signed Integer, Real, or Double 

 
Note that a value with the ENUM type may not take on the value 0 (zero), whereas BACnet’s Enumerated datatype permits 
the use of 0 (zero). 
 
Although double-precision floating point numbers (“Double”) are permitted for the implementation of some flexible types, 
they should only be used in implementations if a single-precision floating point number (“Real”) lacks the required range or 
precision. 

26.4.4 Conformance Code 

Each Interface Table row shall include a conformance code constructed using one or more of the component codes listed in 
Table 26-3. The conformance code specifies certain minimum requirements for the implementation of a value.  
 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 7 
 
 

Table 26-3. Conformance Code Components 
Code Definition 

R Required 
O Optional 
C Conditionally required 
W Writable 
P Writable with Priority 
D Deprecated (not present) 

 
 
Every conformance code contains one of the following component codes: “R”, “O”, “C”, or “D”. The least constraining 
conformance code is "O", meaning that the value is optional in an implementation of the Application Interface. Conditional 
values (code “C”) are not always present but are required to be present if certain specified conditions are met. Required 
values (code “R”) shall be present in every implementation.  Deprecated values (code “D”) shall not be present in a 
conforming implementation of the Application Interface; those values were defined in a previous version of the Application 
Interface. 
 
A conformance code may also contain either “W” or “P” indicating that the value shall be writable if present in an 
implementation of the Application Interface.  Writable values (code “W” or “P”) shall be implemented using properties that 
allow modification using the WriteProperty service, and also allow modification using the WritePropertyMultiple service if 
the device supports the execution of the WritePropertyMultiple service. Values that are writable with priority (code “P”) shall 
be implemented using a commandable property (see Clause 19.2). 

26.4.5 Range and Precision Requirements 

It is recommended that the range of permissible values shall be specified for each Interface Table value.   
For enumerated values, specify each value that may be used, e.g., 1="Off", 2="On", 3="Auto".  A separate table should be 
used if there are more than a few possible values. 
 
For values that have a numeric datatype, in some cases it may be useful to also specify the minimum precision required by 
the application. 
 

26.4.6 Engineering Units 

Each Interface Table value shall specify at most one permitted engineering unit. Only the units corresponding to those listed 
in the BACnetEngineeringUnits production in Clause 21 may be used. 
 
In cases in which it is desirable to have more than one permitted engineering unit, define one Interface Table value for each 
permitted engineering unit, and require that exactly one be present in an implementation. 

26.4.7 Volatility 

Each Interface Table value may have a specified volatility. “N” shall specify a non-volatile value that should be unchanged 
by a soft reset or power cycle of the device that contains the value. “V” shall specify a volatile value that is not expected to be 
retained across a device reset or power cycle. 

26.4.8 Usage 

Each interface table value may specify whether the value is a result produced by the application (Status), an input to the 
application (Control), a trigger input to the application (Self-Clearing), or an application configuration parameter 
(Configuration).  
 
Status values are typically read only. Control values are expected to be written at whatever frequency is needed to control the 
device, and they are often implemented by a commandable property. Self-clearing values are typically intended to allow an 
action to be initiated. Configuration values are not intended to be frequently changed, and individual devices may require 
restarting before the new configuration takes effect or may restrict how often the configuration is changed. 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 8 
 
 

26.5 Application Interface Description 

Whether the application interface includes an Interface Table or not, it shall include a detailed description of the functional 
behavior of what is expected of the application. This description may include supportive diagrams, tables, and narrative as 
necessary. 

26.6 Implementation of an Application Interface in a Device or System 

An Application Interface will typically be entirely implemented within a single BACnet device, but in some cases, its 
functionality may be spread among multiple BACnet devices.   
 
If the Application Interface contains an Interface Table, each implemented value shall conform to all of the requirements 
listed in the Interface Table and the accompanying descriptive text. Each value defined by the application interface that is 
present within an implementation is typically implemented by a single BACnet property, but a value that is not an array or a 
list may be implemented by a single element of an array contained in a BACnet property.  Values that are specified to be 
arrays shall be implemented by a BACnet property containing an array of the specified datatype.  Values that are specified to 
be lists shall be implemented by a BACnet property containing a list of the specified datatype. 
 
A value that is defined to be an Application Interface will be implemented as specified in the definition of that Application 
Interface.   
 
All implemented values that are contained in BACnet devices shall be readable using the ReadProperty service and also 
readable using the ReadPropertyMultiple service if the device supports the execution of the ReadPropertyMultiple service. 
Double-precision floating point numbers should be used in implementations only when required by the application. 

26.6.1 Using Structured View Objects with Application Interfaces 

It is recommended that each implementation of an Application Interface that defines an Interface Table include a 
corresponding Structured View object. 
 
The primary purpose of the Structured View object is to provide references to the objects, properties, and other data sources 
that implement the values in the Interface Table.  The ID of a value in the Interface Table specifies the index of the array 
element within the Structured View object’s Subordinate_List property that contains the reference corresponding to that table 
value.   If a value is specified to be an Application Interface in the Interface Table, then the corresponding reference within 
the Subordinate_List property should point to another Structured View object if the reference is initialized.   
 
If the Structured View object contains an Interface_Name property, then the value shall contain the Application Interface 
Name of the corresponding Application Interface.  See Clause 26.2. 

26.7 Recommendations for Application Interface Design and Maintenance 

Organizations that have a BACnet vendor identification code may define their own application interfaces, or they may extend 
a standard interface.   
 
If an organization intends to extend a standard Application Interface, it is recommended that this be done in such a way that 
any conforming implementation of the organization's Application Interface also conforms to the requirements of the standard 
Application Interface.  If the standard Application Interface to be extended defines an Interface Table, that table should not be 
modified with few exceptions (e.g., to make a value required); if new values are needed, the organization should define an 
additional Interface Table to contain the values that are not part of the standard Application  Interface. 
 
Modifying any existing application interface should be done with caution in order to reduce the potential for interoperability 
problems with existing implementations.  Recommended practice is as follows: 
 

(a) Never change the IDs of existing values in the Interface Table.   
(b) Do not remove any values from the Interface Table.  Values that will no longer be implemented should be marked 

with the conformance code "D" (deprecated). 
(c) If it is necessary to make a significant change to the function of a particular value in an Interface Table, deprecate 

the old value and add a new value. 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 9 
 
 

(d) Include a version number in the Application Interface Name, and advance the version number if a substantive 
change is made to the definition of an Application Interface. 

 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 10 
 
 

135-2010ap-2 Enhance Structured View Object 
 
Rationale 
 
See section 1 rationale for overall concept of Application Interfaces.  
 
This section defines the extensions to the existing Structured View object to support the deployment scenarios 
and requirements for Application Interfaces. 
 
This proposal changes the datatype of the Subordinate_List from BACnetDeviceObjectReference to a new 
datatype, BACnetReference.  The new datatype is backward compatible at the binary encoding level with 
BACnetDeviceObjectReference when used to reference objects. However, it has new options to include 
references to properties, including array index. 
 
Despite their flexibility, the extensions discussed here stop short of full metadata information for workstations and 
very advanced clients to work with.  What is proposed is the minimum that is needed for something like a binding 
tool or network diagnostic browser to work with these interface members.  Richer metadata (writability, limits, 
volatility, etc.), is available in the XML interface definitions and it was not the intent to reproduce all that in binary 
form. 
 
Client Usage: 
 
This proposal attempts to simplify life for the client by making subordinates positionally accessible and making 
them always a pointer.  So client code always does the same thing every time regardless of whether the 
subordinate is local or remote, standard object, or proprietary property.   
The client notices the Interface_Name, and thereby knows the meaning of the subordinates and their positions 
(indexes).  If the subordinate is primitive, it reads the reference and then reads or writes what it is pointing at. If 
the subordinate is itself an interface, then it reads the reference, which points to another Structured View, and the 
process repeats.  Alternately, once the interface type is known, the client can use the ReadPropertyIndirect 
service (see section 3) and traverse multiple indirections in one step.  
 
Positional access:  
 
If we assume that BACnet Application Interfaces and the Building Blocks that make them up are each 
independently extensible over time, then, recognizing that it is not possible to "flatten" a collection of 
independently extensible child blocks into a unchanging positions for the parent interface, positional (indexed) 
access to interface members can only be achieved if the main interface and the child Building Blocks are modeled 
as separate views.  But since this is usually good practice anyway, this is not a disadvantage, and positional 
access allows very simply and efficient traversal. 
 
 
 
[Change Clause 12.29, p.301]  
 
12.29 Structured View Object Type 
 
The Structured View object type defines a standardized object that provides a container to hold references to subordinate 
objects data, which may include other Structured View objects, thereby allowing multilevel hierarchies to be created. The 
hierarchies are intended to convey a structure or organization such as a geographical distribution or application organization.  
Subordinate objects data may reside in the same device as the Structured View object or in other devices on the network. 

 
Structured View objects may be used to create a collection of data that conforms to a BACnet Application Interface definition 
(see Clause xxx). 
 
The Structured View object and its properties are summarized in Table 12-34 and described in detail in this subclause. 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 11 
 
 

 
Table 12-34. Properties of the Structured View Object Type 

Property Identifier Property Datatype Conforma
nce Code 

... ... ... 
Subordinate_List BACnetARRAY[N] of BACnetDeviceObjectReference   R 
Subordinate_Annotations BACnetARRAY[N] of CharacterString O 
Interface_Name CharacterString O1 
... ... ... 
Referenced_By List of BACnetReference O 
... ... ... 
Extended_Subordinate_List BACnetARRAY[N] of BACnetReference                             O 
Extended_Subordinate_Annotations BACnetARRAY[N] of CharacterString O 
Extended_Interface_Name CharacterString O 

 1 Required if the Structured View conforms to a BACnet Application Interface definition 
 
12.29.7 Subordinate_List 
 
This property, of type is a BACnetARRAY of BACnetDeviceObjectReference, that defines specifies the location of the 
members of the current Structured View. 
 
By including references to ‘child’ Structured View objects, multilevel hierarchies may be created. To avoid recursion, it is 
recommended that a single Structured View object should be referenced only once in the hierarchy. 
 
For references of type 'object' and 'property', if If the optional device identifier is not present for a particular 
Subordinate_List member, then that object must reside in the same device that maintains the Structured View object. For 
references of type 'property', if the optional object identifier is not present, then the referenced property resides in the 
Structured View object itself.  If Subordinate_List is writable using WriteProperty services, the Subordinate_List may 
optionally be restricted to reference-only objects in the local device. To avoid recursion, it is suggested that a single 
Structured View object should be referenced only once in the hierarchy.  
 
When conforming to a BACnet Application Interface, the value of each subordinate is ultimately a single property value.  If 
the property is referred directly with the 'property' choice, then no other properties are assumed to be related to the 
referenced property.  If the property is referred to indirectly using the 'object' choice, then the implied property is the 
Present_Value of the referenced object and all associated properties in that object are relevant. If the 'uri' choice is used, 
then the exact location of the property value and any associated values are determined by the type of URI and the type of 
data structure at the referenced path. 

 
If the size of the Subordinate_List array is changed, the size of the Subordinate_Annotations array, if present, shall also be 
changed to the same size.  Uninitialized Subordinate_List array elements shall  use the 'object' or 'property' choice with the 
object identifier field having be given the instance number 4194303, or shall use the 'uri' choice with a zero length string.  
 
A Subordinate_List array element the has a 'uri' choice with a string length of zero or whose object identifier instance 
number is equal to 4194303 shall be considered uninitialized and shall be ignored. 
 
 
[Add new Clauses, p.303]  
 
12.29.X1 Interface_Name 
 
This property, of type CharacterString, is the name of a BACnet Application Interface to which this object conforms. A 
BACnet Application Interface defines the meaning of the members of the Subordinate_List property. 
 
To ensure uniqueness, an interface name shall begin with a vendor identifier code (see Clause 23) in base-10 integer format, 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 12 
 
 

followed by a dash. All subsequent characters are administered by the organization registered with that vendor identifier 
code. The vendor identifier code that prefixes the interface name shall indicate the organization that publishes and maintains 
the interface definition. This vendor identifier need not have any relationship to the vendor identifier of the device within 
which the object resides.  
 
12.29.X2 Referenced_By 
 
This property, of type List of BACnetReference, is a list of pointers to subordinates of other Structured Views that are 
pointing to this Structured View object.  This allows users of this Structured View object to easily find associated Structured 
Views, for example, to link an HVAC source to its consumers or an electric meter to its submeters. 
 
As an example, if a Structured View for a VAV Terminal has a subordinate for "Air_Source" which points to the Structured 
View of an Air Handler, that Air Handler's Structured View could, in turn, have a pointer to the "Air_Source" subordinate 
property of the Structured View of the VAV Terminal in its Referenced_By property.  This way, an observer starting with 
either Structured View would know of the relationship between the two. 
 
12.29.X3 Extended_Subordinate_List 
 
This property, of type BACnetARRAY of BACnetReference, specifies the location of additional members of the Structured 
View.  When a Structured View conforms to a BACnet Application Interface, the meaning of the Subordinate_List is 
determined by the definition of the BACnet Application Interface specified in the Interface_Name property. The 
Extended_Subordinate_List is therefore used to hold additional proprietary members of the view, and the set of additional 
members is optionally indicated by the Extended_Interface_Name property.   

 
By including references to ‘child’ Structured View objects, multilevel hierarchies may be created. To avoid recursion, it is 
recommended that a single Structured View object should be referenced only once in the hierarchy 
 
For references of type 'object' and 'property', if the optional device identifier is not present for a particular 
Extended_Subordinate_List member, then that object must reside in the same device that maintains the Structured View 
object. For references of type 'property', if the optional object identifier is not present, then the referenced property resides in 
the Structured View object itself.  If Extended_Subordinate_List is writable using WriteProperty services, the 
Extended_Subordinate_List may optionally be restricted to reference-only objects in the local device.  
 
If the size of the Extended_Subordinate_List array is changed, the size of the Extended_Subordinate_Annotations array, if 
present, shall also be changed to the same size.  Uninitialized Extended_Subordinate_List array elements shall  use the 
'object' or 'property' choice with the object identifier field having been given the instance number 4194303, or shall use the 
'uri' choice with a zero length string.  
 
An Extended_Subordinate_List array element that has a 'uri' choice with a string length of zero or whose object identifier 
instance number is equal to 4194303 shall be considered uninitialized and shall be ignored. 
 
12.29.X4 Extended_Subordinate_Annotations 
 
This property, of type BACnetARRAY of CharacterString, shall be used to define a text string description for each member 
of the Extended_Subordinate_List. The content of these strings is not restricted. 
 
12.29.X5 Extended_Interface_Name 
 
This property, of type CharacterString, is the name of a proprietary extension to which this object conforms. A proprietary 
extension defines the contents of the Extended_Subordinate_List property. 
 
To ensure uniqueness, an interface name shall begin with a vendor identifier code (see Clause 23) in base-10 integer format, 
followed by a dash. All subsequent characters are administered by the organization registered with that vendor identifier 
code. The vendor identifier code that prefixes the interface name shall indicate the organization that publishes and maintains 
the interface definition. This vendor identifier need not have any relationship to the vendor identifier of the device within 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 13 
 
 

which the object resides.  
 
 
[Add new construction to Clause 21, p.626]  
 
BACnetReference ::= CHOICE {  -- tags [0]&[1] compatible with BACnetDeviceObjectReference 
  object      SEQUENCE {  
    deviceIdentifier [0] BACnetObjectIdentifier OPTIONAL, 
    objectIdentifier [1] BACnetObjectIdentifier, 
    }, 
  property  [2] SEQUENCE {  
    deviceIdentifier [0] BACnetObjectIdentifier OPTIONAL, 
    objectIdentifier [1] BACnetObjectIdentifier OPTIONAL, 
    propertyIdentifier [2] BACnetPropertyIdentifier, 
    propertyArrayIndex [3] Unsigned OPTIONAL, 
    }, 
  uri   [3] CharacterString 
 }  
 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 14 
 
 

135-2010ap-3 Add New Service ReadPropertyIndirect 
 
Rationale 
 
See section 1 rationale for overall concept of Application Interfaces.  
 
The proposed use of Structured View objects to represent application interfaces increases the amount of effort 
(via indirection) required to access property values. 
 
This proposal defines a new service which would allow simple traversal of an object hierarchy in order to read 
values in a more efficient manner. 
 
 

[Insert Clause 15.X, p. 489] 

15.X ReadPropertyIndirect Service 

The ReadPropertyIndirect service allows a client to traverse a hierarchy of objects within a single device when the client 
knows the path through the objects. This supports efficient consumption of hierarchical application interfaces. 
 
When the end of the path is reached, the service returns the value of the referenced property. If, in traversing the path, the 
path refers to an object in another device, the service will return the depth read and the reference that leaves the device. This 
allows the client to continue the path traversal through a request to the referenced device. 
 
This service may be used to traverse any object type that contains an array, list, or array of lists of references. Examples of 
such properties are Subordinate_List and Group_Members and for the purpose of describing this service, these properties are 
referred to as reference lists. Note that the List_Of_Group_Members found in the Group object is not considered a reference 
list property due to the complex structure of the List_Of_Group_Members. 
 
Every BACnet device that is capable of containing Structured View objects that represent application interfaces shall execute 
this service. 

15.X.1 Structure 

The structure of the ReadPropertyIndirect primitive is shown in Table 15-X1. The terminology and symbology used in this 
table are explained in Clause 5.6. 
 

Table 15-X1. Structure of ReadPropertyIndirect Service Primitives 
Parameter Name Req Ind Rsp Cnf 

Argument M M(=)   
  Object Identifier M M(=)   
  Property Identifier C C(=)   
  Property Array Index C C(=)   
  Path M M(=)   
     
Result(+)   S S(=) 
  Object Identifier   M M(=) 
  Property Identifier   M M(=) 
  Property Array Index   C C(=) 
  Path   M M(=) 
  Depth Traversed   M M(=) 
  Referenced Object Identifier   M M(=) 
  Referenced Property Identifier   C C(=) 
  Referenced Array Index   C C(=) 
  Referenced List Index   C C(=) 
  Referenced Property Value   M M(=) 
  Error Type   C C(=) 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 15 
 
 

     
Result(-)   S S(=) 
  Error Type   M M(=) 

15.X.1.1 Argument 

This parameter shall convey the parameters for the ReadPropertyIndirect confirmed service request. 

15.X.1.1.1 Object Identifier 

This parameter, of type BACnetObjectIdentifier, identifies the object in which the path starts. 

15.X.1.1.2 Property Identifier 

This optional parameter, of type BACnetPropertyIdentifier, identifies the array or list property that corresponds to the initial 
entry in the Path parameter.  
 
If the ‘Property Identifier’ parameter is not present, then the property shall be inferred by the object type being read using the 
same rules for inferring a property identifier during path traversal. 

15.X.1.1.3 Property Array Index 

If the property identified above is of datatype array, this optional parameter, of type Unsigned, shall indicate the array index 
of the element of the property referenced by this service. If the 'Property Array Index' is omitted, this shall mean that the 
entire array shall be referenced.  
 
If the property identified above is not of datatype array, this parameter shall be omitted. 
 
When the property identified above is a reference list and is not an array of reference lists, under most circumstances, this 
property is not included. If it is included, then the identified element would not be a reference list, and the service treats the 
property in the same way that it treats any non-reference list property. 
 
If this parameter is present and has a value of 0, then the reference is to the length of the array property and is treated as a 
non-reference list property. 

15.X.1.1.4 Path 

The 'Path' parameter is a sequence of one or more Unsigned values that specify the indices into the arrays or lists of 
references. The nth entry in the sequence is the index used for the nth array or list encountered while traversing the hierarchy 
of objects. 

15.X.1.2 Result(+) 

The 'Result(+)' parameter shall indicate that the service request succeeded in whole or in part. A successful result includes the 
following parameters.  

15.X.1.2.1 Object Identifier 

This parameter, of type BACnetObjectIdentifier, specifies the object that was read. It is equal to the service request parameter 
of the same name. 

15.X.1.2.2 Property Identifier 

This parameter, of type BACnetPropertyIdentifier, shall identify that property that was read. If a ‘Property Identifier’ was 
specified in the request, this parameter shall be equal to that parameter’s value, otherwise it shall indicate the inferred 
property. 

15.X.1.2.3 Property Array Index 

If a 'Property Array Index' was specified in the request, this parameter, of type Unsigned, shall be present and shall be equal 
to that parameter’s value. Otherwise it shall be omitted. 

15.X.1.2.4 Path 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 16 
 
 

This parameter, of type sequence of Unsigned, specifies the path that was requested to be read. The whole path provided in 
the request is returned in the result regardless of the depth that was successfully read. 

15.X.1.2.5 Depth Traversed 

This parameter, of type Unsigned, specifies the depth in the path that was successfully read. If the complete path is traversed, 
this value will be one more than the number of items in the path. 

15.X.1.2.6 Referenced Object Identifier 

This parameter, of type BACnetObjectIdentifier, specifies the last object in the path that was successfully read. 

15.X.1.2.7 Referenced Property Identifier 

This parameter, of type BACnetPropertyIdentifier, specifies the last property in the path that was successfully read. 

15.X.1.2.8 Referenced Array Index 

This parameter, of type Unsigned, specifies the array index into the last property in the path that was successfully read. If the 
last property that was successfully read is an array property, and a single element or the size of the array was read, then this 
parameter shall be present. 

15.X.1.2.9 Referenced List Index 

This parameter, of type Unsigned, specifies the position in last property in the path that was successfully read. If the last 
property that was successfully read is a list property, and a single element of the list was read, then this parameter shall be 
present. When this parameter is present, it is equal to the entry in the Path service parameter that identified the list item to 
read. 
 
If the last read property is not a list property, or the complete list was referenced, then this parameter shall be absent. 

15.X.1.2.10 Referenced Property Value 

This parameter conveys the value read from the last referenced property. 

15.X.1.2.11 Error Type 

This parameter is included whenever the complete path is not traversed. It consists of two component parameters: (1) the 
'Error Class' and (2) the 'Error Code'. See Clause 18. The 'Error Class' and 'Error Code' to be returned for specific situations 
are documented in the description of Error Type of an Result(-) response. 

15.X.1.3 Result(-) 

The 'Result(-)' parameter shall indicate that the service request has failed in its entirety. The reason for the failure shall be 
specified by the 'Error Type' parameter. 

15.X.1.4 Error Type 

This parameter consists of two component parameters: (1) the 'Error Class' and (2) the 'Error Code'. See Clause 18. The 'Error 
Class' and 'Error Code' to be returned for specific situations are as follows: 
 

Situation Error Class Error Code 
Specified object does not exist. 
 

OBJECT UNKNOWN_OBJECT 

Specified property does not exist. 
 

PROPERTY UNKNOWN_PROPERTY 

The ‘Property Identifier’ parameter, or the property 
field of the current reference, is not present and the 
property to read cannot be implied by the object type. 

PROPERTY NO_PROPERTY_SPECIFIED 

The specified property is currently not readable by the 
requester. 
 

PROPERTY READ_ACCESS_DENIED 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 17 
 
 

The next property on the path is not a reference list 
property, or the next reference is not initialized. 
 

PROPERTY END_OF_PATH 

An array index is provided but the property is not an 
array of lists of references. 
 

PROPERTY PROPERTY_IS_NOT_AN_ARRAY 

An array index is provided that is outside the range 
existing in the property.  

PROPERTY INVALID_ARRAY_INDEX 

An index from the Path parameter is outside the range 
of items in property for that level of the path. 

PROPERTY INVALID_ARRAY_INDEX 

The next object on the path is located in a different 
device. 

OBJECT PATH_LEAVES_DEVICE 

The next reference on the path is a URI in a 
BACnetReference. 

OBJECT PATH_LEAVES_DEVICE 

The property value is too large to return in the response PROPERTY VALUE_TOO_LONG 

 

15.X.2 Service Procedure 

The responding BACnet-user shall first verify the validity of the 'Object Identifier', 'Property Identifier', and 'Property Array 
Index' parameters and return a 'Result(-)' response with the appropriate error class and code if the object or property is 
unknown, or if the specified property is currently inaccessible for another reason. 
 
The path shall be traversed as far as possible and a Result(+) is returned which indicates the last value read. The path is a list 
of indices into reference list properties. The service parameters Object Identifier, Property Identifier, and Array Index specify 
the reference list that corresponds with the first index in the Path service parameter. The value is read from the specified entry 
in the reference list and is used as the reference along with the next index in the Path service parameter, if there is one. This 
repeats until an error is encountered, the path leaves the device, or the end of the path is reached. When the end of the path is 
reached, the resulting reference is read, if it references an object in the device, and the value is returned. 
 
When reading a reference along the path, if the reference does not include a Property Identifier, then the next Property 
Identifier shall be inferred from the type of the referenced object and whether or not the end of the path has been reached. 
When inferring the reference property in a standard object type, only standard properties for the object type as documented in 
Clause 12 are considered. Thus, non-standard reference list properties cannot be implied and must be explicitly referred to. 
 

Table 15-X2. Inferring Property Identifiers 
Object Middle Of Path End Of Path 

Has a single reference list property and no Present_Value 
property. 
 

Reference list property Reference list 
property 

Has a single reference list property and a Present_Value 
property. 
 

Reference list property Present_Value 

Has no reference list property and a Present_Value 
property. 
 

Present_Value Present_Value 

Has multiple reference list properties and a Present_Value 
property. 
 

No property can be 
inferred. 

Present_Value 

Has multiple reference list properties and no Present_Value 
property. 
 

No property can be 
inferred. 

No property can be 
inferred. 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 18 
 
 

No reference list properties and no Present_Value. No property can be 
inferred.

No property can be 
inferred. 

 
If the path cannot be completely traversed, the last property along the path that can be read shall be indicated along with its 
value. The reason that the path could not be completely read shall be returned. If the path is not traversed because it leaves 
the device, the Referenced Property Value returned shall be a BACnetReference so that clients that do not know the datatype 
of the reference list property are able to consume the returned reference. 
 

Figure 15-X1. Example Object Hierarchy 

 
Using the example object hierarchy in Figure 15-X1, the Table 15-X3 shows the expected return values. 
 

Table 15-X3. Example Service Return Values 
Object 

Identifier 
Path Depth Returned Reference Referenced 

Property Value 
Error Type 

SV1 (4,6,2) 4 (AV1, Present_Value) 36.2 - 
SV1 (4,6,2,9) 4 (AV1, Present_Value) 36.2 PROPERTY, END_OF_PATH 
SV1 (6) 2 (AV1, Priority_Array, 8) NULL - 
SV1 (4,6) 3 (SV3, Subordinate_List) ( (AV1, Name), 

(AV1) 
(5, AV1), 

... ) 

- 

SV1 (4,6,32) 2 (SV3, Subordinate_List) ( (AV1, Name), 
(AV1) 

(5, AV1), 
... ) 

PROPERTY, 
INVALID_ARRAY_INDEX 

SV1 (4,7) 2 (SV2, Subordinate_List, 7) (10, SV2) PROPERTY, 
PATH_LEAVES_DEVICE 

SV2 (7, 1) 1 (SV2, Subordinate_List, 7) (10, SV2) PROPERTY, 
PATH_LEAVES_DEVICE 

SV2 (6, 3) 2 (SV3, Subordinate_List, 3) (5, AV1) PROPERTY, 
PATH_LEAVES_DEVICE 

SV1 (4,6,4) 3 (SV3, Subordinate_List, 4) "http:x.com/OAT" PROPERTY, 
PATH_LEAVES_DEVICE 

SV1 (5) 1 (SV1, Subordinate_List, 5) (AI4194303) PROPERTY, 
NO_PROPERTY_SPECIFIED 

SV1 (4,8) 2 (SV2, Subordinate_List, 8) (AV2) OBJECT, 
UNKNOWN_OBJECT 

SV4 (1,2,3,4) - - - OBJECT, 
UNKNOWN_OBJECT 

AV1 (1,2,3,4) 1 (AV1, Present_Value) 36.2 PROPERTY, END_OF_PATH 

 
 
[Change Clause 18.3 p 520] 
 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 19 
 
 

18.3  Error Class - PROPERTY 

... 
 

NO_PROPERTY_SPECIFIED – The operation was not successful due a property reference containing a device or 
object instance equal to 4194303 or missing required fields required to fully identify the target of the operation. No 
data was logged due to a device or object instance equal to 4194303 in the list of logged properties. 

... 
DUPLICATE_OBJECT_ID - An attempt has been made to write to an Object_Identifier property with a value that 
is already in use in a different Object_Identifier within the same device. 
 
PATH_LEAVES_DEVICE – In traversing a path, the device has encountered a reference to an object in a different 
device. 
 
END_OF_PATH – In traversing a path, the end of the path was reached prematurely. 
 
OTHER - This error code is returned for a reason other than any of those previously enumerated for this Error Class. 

 
 
[Change BACnet-Confirmed-Service-Request production in Clause 21, p 565] 
 
BACnet-Confirmed-Service-Request ::= CHOICE { 
... 
 readProperty   [12] ReadProperty-Request, 
 readPropertyIndirect  [X]  ReadPropertyIndirect-Request, 
 readPropertyMultiple  [14] ReadPropertyMultiple-Request, 
... 
-- Services added after 1995 
 -- readRange   [26]  see Object Access Services 
 -- lifeSafetyOperation  [27]  see Alarm and Event Services 
 -- subscribeCOVProperty  [28]  see Alarm and Event Services 
 -- getEventInformation  [29]  see Alarm and Event Services 
 -- readPropertyIndirect  [X]  see Object Access Services 
 } 
 
[Add new productions to Clause 21, p 570] 
 
ReadPropertyIndirect-Request ::= SEQUENCE { 
 objectIdentifier   [0] BACnetObjectIdentifier, 
 propertyIdentifier   [1] BACnetPropertyIdentifier, 
 propertyArrayIndex  [2] Unsigned OPTIONAL, --used only with array datatype 
 path    [3] SEQUENCE OF Unsigned 
 } 
 
ReadPropertyIndirect-ACK ::= SEQUENCE { 
 objectIdentifier   [0] BACnetObjectIdentifier, 
 propertyIdentifier   [1] BACnetPropertyIdentifier, 
 propertyArrayIndex  [2] Unsigned OPTIONAL,  --used only with array datatype 
 depthTraversed   [3] Unsigned, 
 referencedObjectIdentifier  [4] BACnetObjectIdentifier, 
 referencedPropertyIdentifier [5] BACnetPropertyIdentifier, 
 referencedArrayIndex  [6] Unsigned OPTIONAL,  --used only with array datatype 
 referencedListIndex  [7] Unsigned OPTIONAL,  --used only with list datatype 
 referencedPropertyValue  [8] ABSTRACT-SYNTAX.&Type,   
 errorType   [9] Error OPTIONAL -- provided when path not fully traversed 
 } 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 20 
 
 

 
[Change Clause 21, p 577] 
 
Error ::= SEQUENCE { 
... 
 error-code ENUMERATED { -- see below for numerical order 
... 
 end-of-path   (X), 
... 
 path-leaves-device   (X+1), 
... 
 -- see end-of-path   (X), 
 -- see path-leaves-device   (X+1), 
 ... 
 } 
 } 
  
 
[Change Clause 21, p 628] 
 
BACnetServicesSupported ::= BIT STRING { 
 ... 
 readProperty   (12), 
 -- readPropertyIndirect  (X), 
 readPropertyMultiple  (14), 
 ... 
-- Services added after 1995 
 ... 
 getEventInformation  (39),  -- Alarm and Event Service 
 readPropertyIndirect  (X) -- Object Access Service 
 } 
 
 
 
 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 21 
 
 

135-2010ap-4 Define Machine-Readable Definitions for Application Interfaces 
 
Rationale 
 
See section 1 rationale for overall concept of Application Interfaces.  
 
This section defines the format for machine-readable (XML) definitions of Application Interfaces. 
 
 
[Insert new Annex X (note that 'X' is a place-holder, not the actual annex letter)] 
 
ANNEX X – CSML DEFINITION OF APPLICATION INTERFACES (INFORMATIVE) 
 
(This Annex is not part of this standard but is included for informative purposes only.) 
 
This annex recommends a format for describing Application Interfaces (Clause 26) in CSML (Control Systems Modeling 
Language, Annex Q).  The intent of this annex is to provide a method for conveying the metadata associated with a given 
Application Interface in a machine-readable format that can be utilized by clients of an extended Structured View object 
(Clause 12.29) that realizes an interface, or by other client programs such as configuration workstations. 
 
X.1 Introduction 
 
Clause 26 specifies a standard process for defining and publishing Application Interfaces.  The value of this process is that it 
provides a middle ground between the formal standardization of new Clause 12 objects and the private (and therefore non-
interoperable) specification of proprietary objects deployed by many vendors.  By adopting this process, organizations can 
specify object-like behavior for new applications or functional areas without mandating the precise implementation. 
 
In order to realize the full potential of this process, the Structured View object was revised to allow fine-grained reference to 
arbitrary objects (including, importantly, other Structured View objects) or properties, in local or remote devices.  This new 
flexibility allows Structured View objects to represent the realization, or "as-built" specification, of an instance of an 
Application Interface.  The ReadPropertyIndirect service (Clause 15.x) was introduced to provide a more efficient way for 
clients to access the interface. 
 
As in Annex Q.5, the terms "type" and "definition" are nearly synonymous and used interchangeably in this annex, but the 
term "definition" always refers to a referenceable element (a "typedef" in some languages).  An "instance" is typically an 
element that refers to a definition element using the 'type' attribute and contains values (which may be assigned defaults in 
the definition element). 
 
The process for creating an Application Interface definition may be summarized as follows:  

(a) Extend the CSML definition of Structured View to create a new type 
(b) Publish the CSML definition together with the table described in Clause 26 
(c) Use the new definition to create instances of the Application Interface 

 
The semantic meaning and data type information for the Application Interface elements are described by extending the 
Structured View object and defining a <Target> element for each subordinate.  An extended Structured View of the requisite 
type that represents an instance of an interface is simply a container of references (bindings) to the objects and properties that 
represent the elements of the interface. 
 
An organization defining a new interface is not required to describe this information in CSML, but it is strongly 
recommended.  If a CSML description is provided, the format provided in this annex is the recommended one. 
 
X.2 CSML Type Definitions 
 
Clause 26.4.3 specifies that an Application Interface value may have one of the following types: 

(a) Any Clause 21 Application Type, except NULL 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 22 
 
 

(b) Any Clause 21 Base Type 
(c) An Application Interface, indicated by "Interface" 
(d) A one-dimensional array of any permitted datatype, indicated by "Array of <datatype>" 

 
CSML represents the Clause 21 Application Types as Primitive Data using <Boolean>, <Unsigned>, <Integer>, 
<Enumerated>, etc., elements (Annex Q.3.11).  CSML can also represent Constructed Data using <Sequence>, <Object>, 
<Array>, <List>, <SequenceOf>, etc., elements (Annex Q.3.12). 
 
A digital file containing normative CSML for standard BACnet Base Types may be found at [web location TBD] and 
included by reference in CSML Application Interface definition files.  By convention, CSML definitions are prefixed by 
vendor code.  All ASHRAE-defined types begin with "0-".  Application Interface types begin with "0-AIF-". 
 
The purpose of a CSML Application Interface definition is to represent the required interface elements, specified in 
accordance with Clause 26, in a machine-readable format.  As stated above, "Interface" is also an allowable datatype for an 
interface value and may refer to any definition based on extending the Structured View object type as described in the 
following sections.  The definition for the revised Structured View object type is described first, followed by the constituent 
0-BACnetReference and <Target> element descriptions.  Finally, example definitions are given in section X.5. 
 
X.2.1 0-Object-Base and 0-Object-StructuredView Type Definitions 
 
A non-normative example definition for the "0-Object-StructuredView" is shown below to illustrate how definitions may be 
constructed from primitive types, and how more complex types can be defined by extending simpler ones.   
 
<Definitions> 
 <Object name="0-Object-MinimumBase" displayName="Minimum Base Object"> 
  <Documentation> This is the minimal BACnet Object.  All BACnet objects are  
   required to have these three properties.  The object can be  
   uniquely identified in its device by either the Object_Identifier property  
   or the Object_Name property. </Documentation> 
  <ObjectIdentifier name="object-identifier" 
   type="0-Property-Object_Identifier" displayName="Object Identifier"/> 
  <String name="object-name" type="0-Property-Object_Name" 
   displayName="Object Name"/> 
  <Enumerated name="object-type" type="0-Property-Object_Type"  
   displayName="Object Type"/> 
 </Object> 
 <Object name="0-Object-CommonBase" extends="0-Object-MinimumBase"  
  displayName="Common Base Object"> 
  <Documentation>Many BACnet objects share the properties defined here, in addition to 
   the required minimum set.</Documentation> 
  <String name="description" optional="true" displayName="Description"/> 
  <String name="profile-name" optional="true" displayName="Profile Name"/> 
 </Object> 
 <Object name="0-Object-StructuredView" extends="0-Object-CommonBase"  
  displayName="Structured View Object" 
  comment="ANSI/ASHRAE 135-2010 pg. 720, as revised by DR-037"> 
  <Enumerated name="node-type" type="0-BACnetNodeType" 
   displayName="Node Type"/> 
  <String name="node-subtype" displayName="Node Subtype" optional="true"/> 
  <Array name="subordinate-list" memberType="0-BACnetReference"  
   displayName="Subordinate List"/> 
  <Array name="subordinate-annotations" memberType="String"  
   displayName="Subordinate Annotations" optional="true"/> 
  <String name="interface-name" displayName="Interface Name" optional="true"/> 
  <List name="referenced-by" memberType="String" displayName="Referenced By"  
   optional="true"/> 
  <Array name="extended-subordinate-list" memberType="0-BACnetReference"  
   displayName="Extended Subordinate List"/> 
  <Array name="extended-subordinate-annotations" memberType="String"  
   optional="true" displayName="Extended Subordinate Annotations"/> 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 23 
 
 

  <String name="extended-interface-name" optional="true" 
   displayName="Extended Interface Name"/> 
 </Object> 
</Definitions> 
 
X.2.2 0-BACnetReference Type Definition 
 
In the Structured View object type, the elements in the 'subordinate-list' array are of the type BACnetReference.  This allows 
fine-grained references (down to the property and index level) in either the local object, local device, or a remote device.  
Unbound (null) references are indicated by an objectIdentifier with value="4194304" or uri with value="" (empty string). 
 
A non-normative example definition for 0-BACnetReference is shown below: 
 
<Definitions> 
 <Choice name="0-BACnetReference"> 
  <Choices> 
   <!-- Object Ref (backward compatible with 0-BACnetDeviceObjectReference) --> 
   <Sequence name="object"> 
    <ObjectIdentifier name="deviceIdentifier" contextTag="0" optional="true"/> 
    <ObjectIdentifier name="objectIdentifier" contextTag="1"/> 
   </Sequence> 
   <!-- Property Ref --> 
   <Sequence name="property" contextTag="2"> 
    <ObjectIdentifier name="deviceIdentifier" contextTag="0" optional="true"/> 
    <ObjectIdentifier name="objectIdentifier" contextTag="1" optional="true"/> 
    <Enumerated name="propertyIdentifier" contextTag="2" 
     type="0-BACnetPropertyIdentifier"/> 
    <Unsigned name="propertyArrayIndex" contextTag="3" optional="true"  
     comment="Used only with array datatype. If omitted, the entire array is  
     referenced."/> 
   </Sequence> 
   <!-- URI --> 
   <String name="uri" contextTag="3"/> 
  </Choices> 
 </Choice> 
</Definitions> 
 
X.3 Application Interface Name 
 
The value of the 'name' attribute of an extended Structured View object that defines an Application Interface shall be in the 
format specified in Clause 26.2, e.g., name="555-AIF-Example-VFD.1". This standardized formal name is used to correlate 
the metadata description with other representations of the interface, both written and network-visible.  The document in 
which the interface metadata is defined should also have the same root name with a suffix of ".xml" appended, e.g., "555-
AIF-Example-VFD.1.xml".  The 'displayName' attribute of the extended Structured View object should succinctly convey the 
purpose of the interface, e.g., displayName="Example Variable Frequency Drive". 
 
X.4   Interface Table Elements 
 
Each row in an Application Interface table, as described in Clause 26.4, is represented by a <Sequence> element 
corresponding to a member of the 'subordinate-list' array in an extended Structured View object.  The columns of the 
interface table correspond to attribute value settings of those members or their child elements.  The column names defined in 
Clause 26.4 and the corresponding CSML attribute value settings are described in sections below. 
 
X.4.1  <Sequence> Element 
 
The ID (Clause 26.4.1) of an interface table entry is represented by the 'name' attribute value of the <Sequence> element that 
corresponds to that member in the 'subordinate-list' array.  The 'name' attribute of each array member is a decimal integer, 
beginning with 1, corresponding to its position in the array.  The name should be explicitly set to the corresponding ID in the 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 24 
 
 

interface table.  This value also indicates the index of the corresponding reference in the subordinate-list of an extended 
Structured View object that realizes that interface. 
 
X.4.2 <Target> Element 
 
While the 0-BACnetReference type shown above is sufficient to represent fine-grained references to elements on any device, 
it cannot represent metadata such as the datatype of the reference.  This is accomplished by specifying a <Target> element 
for each member of the 'subordinate-list' array. 
 
The <Target> element is similar in construction to <MemberType> for elements of a collection, but is used for a construct 
that contains a reference.  It may be applied to a <Sequence> or <String> element and is used to convey datatype, range 
limits, engineering units, etc., of the referent.  Each member in the 'subordinate-list' array is represented by a <Sequence> 
element having a name equal to the subordinate's numeric ID (which is equivalent to the index in the array).  A <Target> 
element is enclosed within each <Sequence> element as shown in the examples below. 
 
X.4.3  Flexible Datatypes 
 
Clause 26.4.3 permits the datatype of an interface table entry to be specified as a "flexible" type.  This allows the bound value 
for a realized interface table entry to be any one of the allowable types.  A client reading this value at runtime must be 
prepared to accept any of the allowable types and to coerce the datatype of the returned value if necessary.  The flexible types 
are defined in the following table.  
 

Table X-1.  Flexible Datatypes 
Flexible Type 
Designation 

Implementation Options 

Binary BOOLEAN, ENUMERATED, or Unsigned where 0 equals false and 1 equals true 
Float Real (preferred) or Double 
Multi-state Unsigned (preferred), ENUMERATED, REAL, or Double in positive integral 

increments, excluding zero.    e.g., 1,2,3... or 1.0, 2.0, 3.0... 
Signed INTEGER (preferred), REAL, or Double in integral values. 

e.g., ...,-2, -1, 0, 1, 2... or  ...,-2.0, -1.0, 0.0, 1.0, 2.0, 3.0... 
Unsigned Unsigned (preferred), INTEGER, REAL, or Double in integral values, including zero. 

e.g., 0,1,2,3... or  0.0, 1.0, 2.0, 3.0... 
 
 
The primitive types that constitute these choices may be restricted by 'minimum', 'maximum', or 'resolution' attributes (Annex 
Q.3.6).  The range of allowable values may be dictated by the application or by the specified engineering units (e.g., the 
normal range of "percent" is 0 – 100). 
 
In CSML Application Interface definitions, flexible types are represented by an XML tag for the preferred primitive type, 
e.g., Binary is represented as a <Boolean> element.  The client must determine at run time, and particularly before writing to 
a referenced property, its actual type.  In the case where a Signed or Unsigned value is realized as a Float, values shall be 
rounded up or down to the nearest integer value. 
 
X.4.3.1  Binary Datatype 
 
The Binary datatype is represented by a <Boolean> element as in the following example: 
 
<Sequence name="1"> 
 <Target> 
  <Boolean name="run-stop-monitor" displayName="RUN-STOP Monitor"  
   volatility="volatile" variability="status"> 
   <NamedValues> 
    <Boolean name="stop" value="false" displayName="STOP"/> 
    <Boolean name="run" value="true" displayName="RUN"/> 
   </NamedValues> 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 25 
 
 

  </Boolean> 
 </Target> 
</Sequence> 
 
The displayName/value bindings are determined by the Range/Units values specified in the corresponding Application 
Interface table entry. 
 
X.4.3.2  Float Datatype 
 
The Float datatype is represented by a <Real> element as in the following example: 
 
<Sequence name="4"> 
 <Target> 
  <Real name="output-speed" displayName="Output Speed"  
   volatility="volatile" variability="status" minimum="0.0" 
   maximum="100.0" units="percent"/> 
 </Target> 
</Sequence> 
 
Note that in this example the specified units dictate the allowable range of values. 
 
X.4.3.3  Multi-State Datatype 
 
The Multi-state datatype is represented by an <Enumeration> element as in the following example: 
 
<Sequence name="3"> 
 <Target> 
  <Enumerated name="hand-auto-reference" displayName="HAND-AUTO Reference"  
   volatility="volatile" variability="status"> 
   <NamedValues> 
    <Unsigned name="off" value="1" displayName="Off"/> 
    <Unsigned name="on" value="2" displayName="On"/> 
    <Unsigned name="auto" value="3" displayName="Auto"/> 
   </NamedValues> 
  </Enumerated> 
 </Target> 
</Sequence> 
 
displayName/value bindings are determined by the Range/Units values specified in the corresponding Application Interface 
table entry. 
 
X.4.3.4  Signed Datatype 
 
The Signed datatype is represented by an <Integer> definition as in the following example: 
 
<Sequence name="17> 
 <Target> 
  <Integer name="signed-example" displayName="Signed Example" 
   minimum="0" maximum="255"/> 
 </Target> 
</Sequence> 
 
X.4.3.5  Unsigned Datatype 
 
The Unsigned datatype is represented by an <Unsigned> element as in the following example: 
 
<Sequence name="9"> 
 <Target> 
  <Unsigned name="running-seconds" displayName="Running Seconds"  



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 26 
 
 

   volatility="volatile" variability="status" units="seconds"/> 
 </Target> 
</Sequence> 
 
In this example, the range is restricted to non-negative numbers by definition. 
 
X.4.4 Other Datatypes 
 
Interface table elements defined in terms of Clause 21 base types or primitive types other than the ones described above are 
referred to as having "defined" types.  A reference to a defined primitive type is shown in the following example (note it has 
a default value): 
 
<Sequence name="19"> 
 <Target> 
  <Date name="start-date" displayName="Start Date" value="2011-06-30" /> 
 </Target> 
</Sequence> 
 
Another example (below) defines a reference to defined datatype that happens to be another interface. A run-time client of an 
extended Structured View object that realizes the parent interface would expect to find an object reference to another 
Structured View object at this position in the subordinate-list, with a corresponding interface-name.  If no name is given in 
the interface definition, the client should still expect a reference to an extended Structured View object but must read its 
interface-name property in order to access the interface definition. 
 
<Sequence name="20"> 
 <Target> 
  <Object name="power-meter" displayName="Power Meter" type="555-AIF-Power"/> 
 </Target> 
</Sequence> 
 
X.4.5  Name 
 
The Name (Clause 26.4.2) of an interface table entry is represented by the value of the 'name' attribute of the datatype 
element within the <Target> that corresponds to that member in the 'subordinate-list' array.  The 'displayName' attribute of 
each datatype element provides a short name that describes its function.  The string must be unique within a given interface 
and should be consistent with the Name specified in the interface table. 
 
X.4.6 Conformance Code 
 
The conformance code (Clause 26.4.4) of an interface table entry is represented by a combination of attribute values for the 
datatype element within the <Target> corresponding to a member of the 'subordinate-list' array, as shown in the table below.  
'X' represents a value of "true" or "false". 
 

Table X-2.  Conformance Code Attributes 
Code <Target> attribute settings 

R optional="false"1 writeable=X commandable=X 
W optional="false"1 writeable="true" commandable=X 
P optional="false"1 writeable=X commandable="true" 
O optional="true" writeable=X commandable=X 

OW optional="true" writeable="true" commandable=X 
OP optional="true" writeable=X commandable="true" 
C2 optional="false"1 writeable=X commandable=X 

CW2 optional="false"1 writeable="true" commandable=X 
CP2 optional="false"1 writeable=X commandable="true" 
D optional=X writeable=X commandable=X deprecated="true" 

 1 Default setting; need not be present. 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 27 
 
 

 2 Condition attributes include 'associatedWith', 'requiredWith', etc.  See Annex Q.3.1. 
 
X.4.7  Range Restrictions and Engineering Units 
 
Range restrictions (Clause 26.4.5) for an interface table entry are represented by setting the values of the 'minimum', 
'maximum', and 'resolution' attributes of the datatype element within the <Target> corresponding to that 'subordinate-list' 
array member.  These attributes are described in Annex Q.3.6.1, Q.3.6.2, and Q.3.6.5, respectively.  Other attributes can be 
set for the child attributes as appropriate. 
 
Engineering units (Clause 26.4.5) for an interface table entry are represented by the value of the 'units' attribute of the 
datatype element within the <Target> corresponding to that 'subordinate-list' array member.  The value of the 'units' attribute 
should be one of the enumeration names of the 0-BACnetEngineeringUnits type.  See Annex Q.3.7.1. 
 
X.4.8  Volatility 
 
The volatility (Clause 26.4.6) of an interface table entry is represented by the value of the 'volatility' attribute of the datatype 
element within the <Target> corresponding to that 'subordinate-list' array member (Annex Q.3.1.21).  A value of "V" in the 
interface table is represented by volatility="volatile".  A value of "N" in the interface table is represented by 
volatility="nonvolatile". 
 
X.4.9  Usage 
 
The usage (Clause 26.4.7) of an interface table entry is represented by the value of the 'variability' attribute of the datatype 
element within the <Target> corresponding to that 'subordinate-list' array member (Annex Q.3.1.20).  A value of "status" in 
the interface table is represented by variability="status".  A value of "control" in the interface table is represented by 
variability ="operational-setting".  A value of "configuration" in the interface table is represented by variability 
="configuration-setting". 
 
X.5 Examples 
 
Standard Application Interfaces that appear in Annex B are defined in CSML using external XML files.  Application 
Interfaces defined by other organizations use the same format, as shown below. 
 
X.4.1 CSML for an Example Application Interface 
 
File "555-AIF-Example-VFD.1.xml": 
 
<?xml version="1.0" encoding="UTF-8"?> 
<CSML defaultLocale="en" xmlns="http://bacnet.org/csml/1"> 
 
 <Definitions> 
  <!-- An example Application Interface definition --> 
  <Object name="555-AIF-Example-VFD.1" extends="0-Object-StructuredView"  
   displayName="Variable Frequency Drive Example"> 
 
   <String name="interface-name" value="555-AIF-Example-VFD.1"/> 
 
   <Array name="subordinate-list"> 
    <Sequence name="1"> 
     <Target> 
      <Boolean name="run-stop-monitor" displayName="RUN-STOP Monitor"  
       volatility="volatile" variability="status"> 
       <NamedValues> 
        <Boolean name="stop" value="false" displayName="STOP"/> 
        <Boolean name="run" value="true" displayName="RUN"/> 
       </NamedValues> 
      </Boolean> 
     </Target> 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 28 
 
 

    </Sequence> 
 
    <Sequence name="2"> 
     <Target> 
      <Boolean name="ok-fault-monitor" displayName="OK-FAULT Monitor"  
       volatility="volatile" variability="status"> 
       <NamedValues> 
        <Boolean name="ok" value="false" displayName="OK"/> 
        <Boolean name="fault" value="true" displayName="Fault"/> 
       </NamedValues> 
      </Boolean> 
     </Target> 
    </Sequence> 
 
    <Sequence name="3"> 
     <Target> 
      <Enumerated name="hand-auto-reference" displayName="HAND-AUTO Reference"  
       volatility="volatile" variability="status"> 
       <NamedValues> 
        <Unsigned name="off" value="1" displayName="Off"/> 
        <Unsigned name="on" value="2" displayName="On"/> 
        <Unsigned name="auto" value="3" displayName="Auto"/> 
       </NamedValues> 
      </Enumerated> 
     </Target> 
    </Sequence> 
 
    <Sequence name="4"> 
     <Target> 
      <Real name="output-speed" displayName="Output Speed"  
       volatility="volatile" variability="status" minimum="0.0" 
       maximum="100.0" units="percent"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="5"> 
     <Target> 
      <Real name="pid-feedback" displayName="PID Feedback"  
       volatility="volatile" variability="status" minimum="0.0" maximum="100.0"  
       units="percent"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="6"> 
     <Target> 
      <Real name="output-current" displayName="Output Current"  
       volatility="volatile" variability="status" minimum="0.0" 
       units="amperes"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="7"> 
     <Target> 
      <Real name="output-power" displayName="Output Power"  
       volatility="volatile" variability="status" minimum="0.0" 
       units="kilowatts"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="8"> 
     <Target> 
      <Real name="kilowatt-hour-meter" displayName="Kilowatt-Hour Meter"  
       volatility="volatile" variability="status" minimum="0.0"  



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 29 
 
 

       units="kilowatt-hours"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="9"> 
     <Target> 
      <Unsigned name="running-seconds" displayName="Running Seconds"  
       volatility="volatile" variability="status" units="seconds"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="10"> 
     <Target> 
      <Real name="operating-temp-range" displayName="Operating Temp Range"  
       volatility="volatile" variability="status" minimum="0.0" maximum="100.0"  
       units="percent"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="11"> 
     <Target> 
      <Boolean name="run-stop-command" displayName="RUN-STOP Command"  
       writable="true" volatility="volatile" variability="operational-setting"> 
       <NamedValues> 
        <Boolean name="stop" value="false" displayName="STOP"/> 
        <Boolean name="run" value="true" displayName="RUN"/> 
       </NamedValues> 
      </Boolean> 
     </Target> 
    </Sequence> 
 
    <Sequence name="12"> 
     <Target> 
      <Boolean name="pid-enable" displayName="PID Enable" writable="true"  
       volatility="nonvolatile" variability="operational-setting"> 
       <NamedValues> 
        <Boolean name="direct" value="false" displayName="Direct"/> 
        <Boolean name="pid" value="true" displayName="PID"/> 
       </NamedValues> 
      </Boolean> 
     </Target> 
    </Sequence> 
 
    <Sequence name="13"> 
     <Target> 
      <Boolean name="fault-reset-command" displayName="Fault Reset Command"  
       writable="true" volatility="volatile" variability="operational-setting"> 
       <NamedValues> 
        <Boolean name="off" value="false" displayName="Off"/> 
        <Boolean name="on" value="true" displayName="On"/> 
       </NamedValues> 
      </Boolean> 
     </Target> 
    </Sequence> 
 
    <Sequence name="14"> 
     <Target> 
      <Enumerated name="most-recent-fault-code" 
       displayName="Most Recent Fault Code" volatility="volatile" 
       variability="status"> 
       <NamedValues> 
        <Unsigned value="1" name="noneRecorded" displayName="None Recorded"/> 
        <Unsigned value="2" name="communicationError"  



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 30 
 
 

         displayName="Communication Error"/> 
        <Unsigned value="3" name="overCurrent" displayName="Over Current"/> 
        <Unsigned value="4" name="overTemperature" 
         displayName="Over Temperature"/> 
        <Unsigned value="5" name="overSpeedDeviation" 
         displayName="Over Speed Deviation"/> 
        <Unsigned value="6" name="overVoltage" displayName="Over Voltage"/> 
        <Unsigned value="7" name="underVoltage" displayName="Under Voltage"/> 
        <Unsigned value="8" name="shortCircuit" displayName="Short Circuit"/> 
        <Unsigned value="9" name="groundFault" displayName="Ground Fault"/> 
        <Unsigned value="10" name="motorOverload" 
         displayName="Motor Overload"/> 
        <Unsigned value="11" name="inverterOverload" 
         displayName="Inverter Overload"/> 
        <Unsigned value="12" name="overTorqueProtection" 
         displayName="Over Torque Protection"/> 
        <Unsigned value="13" name="externalFault" 
         displayName="External Fault"/> 
        <Unsigned value="14" name="operatorInterfaceError"  
         displayName="Operator Interface Error"/> 
        <Unsigned value="15" name="loadLoss" displayName="Load Loss"/> 
        <Unsigned value="16" name="configurationError"  
         displayName="Configuration Error"/> 
        <Unsigned value="17" name="feedbackFailure" 
         displayName="Feedback Failure"/> 
        <Unsigned value="18" name="outputPhaseLoss" 
         displayName="Output Phase Loss"/> 
        <Unsigned value="19" name="motorStall" displayName="Motor Stall"/> 
        <Unsigned value="20" name="powerUnitError" 
         displayName="Power Unit Error"/> 
        <Unsigned value="21" name="inputPhaseDCRipple" 
         displayName="Input Phase / DC Ripple"/> 
        <Unsigned value="22" name="internalDriveFailure" 
         displayName="Internal Drive Failure"/> 
       </NamedValues> 
      </Enumerated> 
     </Target> 
    </Sequence> 
 
    <Sequence name="15"> 
     <Target> 
      <Real name="direct-setpoint" displayName="Direct Setpoint"  
       writable="true" volatility="nonvolatile" 
       variability="operational-setting" minimum="0.0" maximum="100.0"  
       units="percent"/> 
     </Target> 
    </Sequence> 
 
    <Sequence name="16"> 
     <Target> 
      <Real name="pid-setpoint" displayName="PID Setpoint" 
       writable="true" volatility="nonvolatile" 
       variability="operational-setting" minimum="0.0" maximum="100.0" 
       units="percent"/> 
      </Target> 
     </Sequence> 
    </Array> 
   </Object> 
  </Definitions> 
</CSML> 
 
 



BSR/ASHRAE Addendum ap to ANSI/ASHRAE Standard 135-2010, BACnet® - A Data Communication Protocol for Building Automation 
and Control Networks 
First Advisory Public Review 
 

 31 
 
 

[Insert new Clause Q.3.1.X, p.945] 
 

Q.3.1.X 'deprecated' 
 
This optional attribute, of type xs:boolean, used only in definitions, indicates that an element may be present in instances of 
that definition, but should be ignored. 
 
The default value of this attribute is "false". 
 
 
 


