AT 90-14-4

TESTING CONFORMANCE TO ENERGY
MANAGEMENT AND CONTROL SYSTEM
COMMUNICATION PROTOCOLS—PART 2:
TEST SUITE GENERATION

S.T. Bushby
Associate Member ASHRAE

ABSTRACT

ASHRAE has formed a committee to develop a
standard communication protocol for energy manage-
ment and control systems (EMCS). The goal of being
able to connect control equipment from any vendor
and make it work as part of an integrated system will
not be achieved until tests to determine conformance
to the standard are developed. This paper is the sec-
ond in a two-part series addressing the question of
testing conformance to an EMCS protocol.

This paper reviews international efforts to de-
velop procedures for generating test suites used to
determine conformance to a communication protocol
standard. Four criteria are defined for evaluating the
alternatives, and recommendations for the ASHRAE
standard are made. An outline for the ASHRAE test
suite is presented along with comments about the fu-
ture steps needed to completely define it.

INTRODUCTION

In January 1987 ASHRAE formed Standards Proj-
ect Committee 135P (SPC 135P) to undertake the task
of developing a standard communications protocol for
building energy management and control systems
(EMCS) (Bushby and Newman 1988). The goal of SPC
135P is to develop an industry consensus standard,
which, when implemented, will permit control devices
made by any manufacturer who complies with the
standard to be easily integrated into one control sys-
tem:. This goal will not be completely achieved until
control devices can be tested to determine whether
they conform to the standard.

The first paper in this series described the con-
formance testing process in general terms. Specific
recommendations were made for a test system ar-
chitecture suitable for testing conformance to the de-
veloping ASHRAE protocol standard. These
recommendations were based on a review of the cur-
rent standards, draft standards, and published liter-
ature on testing conformance to communication
protocols.

Once an abstract test methodology has been

accepted and some means of implementing it on a
real system has been devised, the problem of creating
the actual tests remains. This is a nontrivial problem
and several approaches to dealing with it have been
suggested in the literature. This paper will review the
literature and propose an approach for developing the
tests that would be used to determine conformance
to the ASHRAE protocol. These tests collectively make
up what is called a “conformance test suite.”

THE CONFORMANCE TEST SUITE

The International Standards Organization (ISO)
has developed draft proposals and draft international
standards for testing conformance to standards for
open system interconnection (ISO 1987c; 1988a, b,
c). One of these draft standards addresses the issue
of specifying abstract test suites (ISO 1988b). An ab-
stract test suite is a hierarchical structure composed
of test groups, test cases, test steps, and test events
(ISO 1988a, b). The suite is abstract because the
specifications are made in an implementation-inde-
pendent manner. The actual code used to implement
the tests is not specified by a standard.

Test cases fall in the middle of the hierarchy and
are the key to understanding the structure. A test case
has a narrowly defined purpose, such as verifying that
the implementation under test (IUT) has one particular
required capability. Test cases are combined into test
groups, which provide a logical ordering, and all of
the test groups combine to make up an abstract test
suite.

A test case is composed of an ordered series of
test steps. The test steps are typically divided into
three parts: a preamble, the actual test, and a post-
amble. The preamble is one or more steps used to
place the IUT in a required start state. This is followed
by one or more steps to conduct the actual test. Finally,
the postamble is used to return the IUT to a desired
final state. Each test step consists of one or more test
events. A test event is the transfer of a single protocol
data unit (PDU) or access service primitive (ASP) to
or from the IUT.

Steven T. Bushby is an Electronics Engineer in the Mechanical Systems and Controls Group, Building Environment Division,
Center for Building Technology, National Institute of Standards and Technology, Gaithersburg, MD.



EVALUATING APPROACHES TO TEST SUITE
DESIGN

Several approaches to designing conformance
test suites have been tried. Each of these methods
has its own strengths and weaknesses. It is important
to establish some criteria for evaluating these different
approaches, and the following four criteria will be used
for this purpose:

1. Completeness —The test suite should contain
a test case that corresponds in some manner to each
conformance requirement of the standard. This in-
cludes optional variations permitted in the standard
and any variations due to classes of conformance.

2. Practical to implement—The test suite should
be small enough to be administered without placing
a severe burden on either the tester or the protocol
implementor.

3. Fair and reproducible—No advantage should
be given to any particular implementation or imple-
mentation approach. Repeated testing of the same
implementation should give the same result.

4. Semantic coupling between test cases and
conformance requirements —Each test case should
be designed to test a specific requirement of the stan-
dard. If a particular test case passes or fails, it should
be clear which conformance requirement of the stan-
dard applies.

Approaches to test suite design can be broadly
classified as manual or semiautomated. The semiau-
tomated techniques attempt to take advantage of for-
mal descriptions of the protocol to assist in test suite
development. These approaches include the use of
transition tours, the DS-method, the W-method, and
generative grammars, all of which will be described
and evaluated according to the criteria above.

MANUAL APPROACHES TO TEST SUITE DESIGN

Exhaustive testing of communication protocols is
impossible because the set of all possible combina-
tions of communication events is unbounded. An ap-
proach is needed that selects “interesting” test cases,
which, when applied, will increase confidence that an
implementation will perform correctly under a com-
prehensive set of circumstances. For most protocols,
the design and selection of these test cases has been
done manually (Hengeveld and Kroon 1987). The
manual approach involves one or more persons, with
detailed knowledge of the protocol specification, es-
sentially thinking up relevant test cases and the spe-
cific test steps for each case. Conformance tests for
recent protocols developed in this way include Man-
ufacturing Automation Protocol (MAP) (Mathews et al.
1986; Muralidhar 1987), OSI Transport layer (Night-
ingale 1981, 1982), and Integrated Services Digital
Network (Rathgeb 1987).

The main advantage of this approach over semi-
automated techniques is the semantic coupling be-
tween test cases and conformance requirements,
criterion 4 above. The precise intent of each test case
can be clearly stated, and there is a direct corre-
spondence between the results of the test and the
conformance requirements of the standard. If a par-

1135

ticular test is passed or failed, it is clear what this
means in terms of meeting the conformance require-
ments of the standard.

Manual approaches can also do very well when
considering the practicality of implementation. The de-
signer has a great deal of control over the number of
test cases in the suite and, by working carefully, can
avoid many redundant tests. This can keep the test
suite small enough to be practical. Also, an English
language specification of the protocol is adequate.

From the standpoint of fairness and reproduci-
bility, manual approaches do not particularly stand out
as good or bad. Errors or omissions on the part of the
designer could cause difficulty in this regard, but it is
cettainly possible to manually design a fair and re-
producible test suite.

There is an obvious disadvantage to this ap-
proach and that is ensuring completeness. The test
suite may have incomplete coverage because there
may be a number of tests the test designer does not
think of or that may be intuitively unappealing. Tests
that could lead to significantly greater confidence in
the reliability of the IUT might be overlooked. This
problem is significant, but it tends to be self-correcting
over a period of time. Experience with testing a pro-
tocol can lead to new insights that fill in the missing
pieces.

SEMIAUTOMATED APPROACHES TO
CONFORMANCE TESTING

Semiautomated approaches to test suite gen-
eration are an attempt to overcome the principal short-
coming of manual approaches, which is the inability
to guarantee completeness. Most of these approaches
are based on analysis and testing of finite state ma-
chine (FSM) models and apply techniques developed
for fault detection in electronic circuits. They require
either a formal specification of the protocol based on
finite state machines or a finite state machine model
developed from the informal protocol specification.

The basic approach is to generate a sequence
of valid inputs to the FSM,, in this paper called a check-
ing sequence. This sequence is then used to exercise
the IUT. The output from the IUT is “checked" against
the output defined for the FSM and, if they agree, the
IUT passes the test. The methods vary in the means
used to generate the checking sequence and the type
of protocol errors they can detect. Several different
methods for generating checking sequences have
been proposed, including transition tours, the DS-
method, the W-method, and generative grammars.

Transitloh Tour Method

Consider a graph with nodes representing the
states of the FSM and edges representing the tran-
sitions between states. For a communication protocol,
the transitions take place based on protocol events. It
is often the case that more than one protocol event
will cause the same transition. A transition tour is an
input sequence, starting with some initial state, which
covers all transitions defined in the FSM (Bochman
and Sarikaya 1982; Favreau and Linn 1987; Naito and



Tsunoyama 1981; Sarikaya and Bochman 1984). For
transitions that can be fired by more than one input
event, a transition for each possible event is included
in the tour. The transition tour sequences may be gen-
erated by modifying graph traversal algorithms (Sar-
ikaya and Bochman 1984). An example of a simple
FSM and one of its transition tours is shown in Figure
1. It has been shown that transition tours detect all
errors in the output function but may not detect all
errors in the next state function (Sarikaya and Boch-
man 1984).

The DS-Method

The DS-method is based on the concept of a
distinguishing sequence (DS). A DS is an input se-
quence that generates a unique output for each state
of the FSM. That is, if the FSM model has n states,
there exists a finite input sequence for which the FSM
produces n different responses, according to which
state it is in when the sequence is applied. By applying
the DS and observing the results, it is possible to de-
termine the state a FSM was in before the DS was
applied. The state of the machine after applying the
DS may or may not be the same as it was before. Not
all FSM have a DS. An algorithm for generating a DS
may be found in circuit theory textbooks (Friedman
and Menon 1975, p. 143). An example FSM and its
two DS are shown in Figure 2.

Several methods for generating a checking se-
quence based on the use of a DS exist. The original
version, applied to communication protocols, was de-
veloped by Gonec (1970). The checking sequence for
this approach is made up of two parts called the «
sequence and the B sequence. The a sequence is
used to verify that the IUT implements all of the states
of the FSM and that they accept the DS. The B se-

P,/0,

P, /05
P70,

Ps/0,
Ps/0s

Pa/0,

(a) An example finite state machine notation:
P/O; means the transition occurs on the input service
primitive P; and produces output O,

S1P1S; PySi P2S; PySi Py
PiSi P3Ss P:S; P2 S,

(b) One possible transition tour
notation: start-state input final-state input final-state . . .
Figure 1

P3 S;

1136

notation: P/O; means the transition occurs on the input ser-
vice primitive P; and produces output O

Output Sequence

Output Sequence
Generated by Input

Generated by Input

Initial State ~ Sequence P,P,P, Sequence P,P,P;
S 0,0,0, 0,0,0,
Sz 0101 Oz 0101 Oz
S; 0,0,0, 0,0,0,
84 020202 020202

Figure 2 An example FSM with two distinguishing se-
quences, P,P,P, and P,P,P,

quence is used to traverse all of the possible transi-
tions in the FSM. Algorithms for generating the « and
B sequences may be found in Gonec (1970).

The DS-method requires that the FSM be fully
connected and completely specified (Chow 1978).
These are important restrictions because FSM for
many real protocols cannot meet them (Aho et al. 1988;
Bremer et al. 1984; Favreau and Linn 1987). When this
method can be applied, the resulting test sequences
tend to be extremely long (Aho et al. 1988). Some more
recent modifications to this approach have been made
that relax the definition of a DS so that the technique
can be applied to a wider range of FSM (Aho et al.
1988; Hsieh 1971; Sabrani and Dahbura 1988). In one
case (Aho et al. 1988), substantial reduction in the
length of the generated sequences is also reported.
The DS-methods have better error-detection capabil-
ities than the transition tour method. All errors in the
real implementation of the FSM can be detected so
long as no additional states have been added (Fried-
man and Menon 1971; Sarikaya and Bochman 1984).
The W-Method v

The W-method, also called the PW-method or
characterization sequence, was originally proposed
by Chow (1978). Many authors have reported using
this approach for generating test sequences for com-
munication protocols (Bochman and Sarikaya 1982;
Bremer et al. 1984; Favreau and Linn 1987; Sarikaya
and Bochman 1984). This method can be applied to
some FSM that do not have a DS. The FSM in Figure
1 is an example. There is no DS for this FSM; however,
there is a set of inputs that can be used to “charac-
terize” the states of the machine. This characterization
set, W, is {Py, P4}. The key point is that this is not an



input sequence. The state changes that would occur
for the input are ignored. Only the output resulting
when each input from the set W is applied to a given
state is considered. If the output set is unique for each
state in the FSM, the input set “characterizes” the
states of the machine. Table 1 illustrates the output
set corresponding to W = {P,, P,} for the FSMin Figure
1.

TABLE 1
State Responses to the Characterization Set {P,, P.}
Input Input
P, P,
state
1 O, 0,
2 Oz 04
3 0Os (o))

The checking sequence is obtained by concat-
enation of two sets P and W (P - W). The set P is the
set of all partial paths in a test tree for the FSM, in-
cluding the empty sequence. An algorithm for gen-
erating test trees is presented in Chow (1978). The set
W is the characterization set described above. To con-
duct the test, each sequence from the concatenation
of P and W is applied, beginning with the initial state.
After a particular sequence is completed, the FSM is
returned to the initial state to begin the next sequence.
An example of a test tree and the set of partial paths
is shown in Figure 3. The checking sequences result-
ing from P - W are:

P 2 P 3P 2 P 1P4P 2
Pa PsPa P1P4P,
PP, PaP2 PsP4P>
P1P4 P4P4 P3P4P4
P2P2 P1P2P2 P3P2P2
P2Py P1P2Ps P3P2Ps

(a) Testing tree for the finite state machine in Figure 1.

{}

Py PiP,

P, PP,

Ps P3P,

P4 P3P,
(b) Partial paths in the testing tree.

Figure 3

The characterization sequence approach re-
quires that the FSM be fully connected and completely
specified (Chow 1978). These are important restric-
tions because FSM for many real protocols cannot
meet them (Aho et al. 1988; Bremer et al. 1984; Fav-
reau and Linn 1987). When this method can be ap-
plied, the resulting test sequences tend to be
extremely long (Aho et al. 1988). It has the same error-
detection capability as the DS-method (Sarikaya and
Bochman 1984).

Generating Test Sequences from Generative
Grammars

Another approach to automating test sequence
generation has been the use of generative grammars
(Linn and McCoy 1983); readers not familiar with the
terminology of BNF grammars should refer to Appen-
dix B. In this approach, the input and output events
of the protocol are considered to be the terminal sym-
bols of a grammar. The nonterminal symbols are the
possible states of the FSM. The productions of the
grammar are constructed so that the language of the
grammar describes the valid exchanges of protocol
data units between the tester and the IUT.

At any point in a derivation, there may be several
productions that could be used. A probability is as-
signed to each production, and a decision is made
based on a random number generator. The test de-
signer can manipulate the outcome of the sequence
generation by changing the probabilities. This enables
the designer to account for classes of conformance
by eliminating productions that do not apply to a given
conformance class. The authors reported that use of
the random number generator resulted in many du-
plicate test sequences. These were removed by sort-
ing techniques (Linn and McCoy 1983). When this was
completed, the number of test sequences generated
was reduced compared with the methods described
above.

EVALUATION OF FSM METHODS FOR
SEQUENCE GENERATION

The appeal of semiautomated sequence gen-
eration is that it might solve the problem of ensuring
complete coverage of the protocol conformance re-
quirements. It could be argued that the techniques
described here are an improvement over manual ap-
proaches, but it is clear that they are not a solution to
the problem. The difficulty is that, in most cases, an
unmanageably large number of sequences are gen-
erated. A means of reducing the repetitive or se-
mantically equivalent cases is required to make the
test practical to implement. Techniques for doing this
have been proposed (Favreau and Linn 1987), but
they require subjective judgment on the part of the test
suite designer. The subjective element that caused the
problem in the first place is thus returned to the pro-
cess in slightly different form.

Semantic coupling of test cases to conformance
requirements, the principal strength of manual ap-
proaches, has been lost in these semiautomated tech-
niques. The test cases are generated from the
structure of the FSM model. To match the resulting



sequences to one or more conformance requirements
requires human analysis. This increases the difficulty
of deciding what the results of a particular test mean
in terms of conforming to the standard.

Another problem with sequence generation
based on finite state machines is that a classic finite
state machine is not a good model for communication
protocols. The problem is that state transitions in a real
protocol depend on more than just the input and the
current state. Formal description techniques like ES-
TELLE (ISO 1987a) have solved this problem by de-
fining extended finite state machines. The difference
is the addition of predicates, which are another factor
in deciding when to fire state transitions. The test se-
quence generation methods described above are not
based on extended FSM. Assumptions must be made
about the value of the predicates used in the formal
description in order to apply the sequence generation
techniques at all. A discussion of this problem may be
found in Favreau and Linn (1987). This introduces an-
other subjective factor and contributes to the problem
of large numbers of sequences because the genera-
tion may be repeated for several variations in the as-
sumptions.

Another danger in using automated sequence
generation based on FSM is that the model may rep-
resent the internal behavior of an idealized implemen-
tation, rather than the externally observable behavior
of a system. The test sequences generated could, in
some cases, become a test for conformance to the
model and not the requirements of the standard. This
issue is raised in Appendix A of Part 2 of the draft
international standard on conformance testing in the
context of overspecifying conformance requirements
when formal descriptions are used as part of a stan-
dard (ISO 1988b). If a formal description overspecifies
conformance requirements, then, clearly, test se-
quences generated from that description may be
overly restrictive as well. This could raise legitimate
questions about the fairness of the test.

The appeal of automated test sequence gener-
ation is great, which explains the large number of
people who have been attempting to develop such
techniques in recent years. Thus far, a fully successful
approach has not been found, but it is an area worthy
of future research. As a practical matter, there seems
to be no advantage to using an automated approach
to sequence generation for the ASHRAE protocol at
this time.

RECOMMENDATIONS FOR THE ASHRAE
PROTOCOL

Based on analysis of the current state of the art
in automatic test sequence generation, it is recom-
mended that a manual approach be used to develop
the test sequences for the ASHRAE protocol. The use
of semiautomated approaches is not sufficiently ma-
ture to be the basis for a standard. This conclusion
seems to be supported by the ISO committee devel-
oping the conformance testing standard. Part 2 of the
draft international standard (ISO 1988b) explicitly
states that the relationship between abstract test suite
specification and formal description techniques is out-

1138

side the scope of the standard. A note further states
that it is expected that an addendum to the standard
will be issued in the future to change the scope and
address this issue. This addendum is only in a very
early stage of development (ISO 1987c).

Part 2 of the draft international standard (ISO
1988b) gives detailed recommendations about pre-
paring the abstract test suite in clauses 8-11. These
recommendations are a helpful guide to the test suite
designer, and their use will increase the probability of
complete coverage of the protocol conformance re-
quirements.

Figure 4 shows a proposed outline of an abstract
test suite for the ASHRAE protocol. This outline is a
hierarchy of test groups. Much detail needs to be
added to this outline to include the individual test
cases, their purpose, and the test steps to be followed
for each. At this level of detail, no tests for timing re-
quirements or flow control have been included. Some
portions of the standard are sufficiently developed to
permit including this additional detail, but it is beyond
the scope of this paper. A more detailed example test
case, which illustrates the idea, can be found in Ap-
pendix A.

An important step in fleshing out the test suite is
enumerating all of the conformance requirements for
each clause in the standard. This is not only important
for refining the test suite but also assists the standard
committee in defining precisely what the conformance
requirements are.

Four broad groups of tests are proposed. It is
important to note that although they are logically dis-
tinct, there will, in fact, be overlap with regard to the
actual test cases. One example of this is a series of
test cases to determine that all of the required object
types are supported. This can be done by repeated
use of the ReadProperty service. These same tests
can serve to verify that the ReadProperty service be-
haves correctly.

This overlap also illustrates an important point
about analyzing the test results. A failure to return the
requested properties of an object could occur be-
cause the object is not supported or because the
ReadProperty service is not functioning properly. It
may be that several tests must be looked at as a group
to determine which of the logical test cases failed.

As it is currently envisioned, the ASHRAE pro-
tocol devices will be highly dependent on their con-
figuration. For example, in most cases it will not be
possible to create or delete objects on the fly. These
objects will be defined when the controller is config-
ured. This is important when testing conformance be-
cause a representative sample of objects must be
available to conduct the conformance tests. This will
require establishing a standard configuration, based
on conformance class, which will be used for test pur-
poses. These standard configurations must also ac-
count for the various options that might be supported
in any particular implementation.

SUMMARY AND FUTURE DIRECTIONS

An abstract test suite as defined in draft inter-
national standards for testing conformance to com-



OUTLINE FOR ASHRAE PROTOCOL ABSTRACT TEST SUITE

A. Capability Tests

These tests will address the static conformance requirements of the standard and will focus on testing support for the
required and optionally selected object-types and their properties.

A.1 Mandatory Object-Types
A.1.1 Conformance Class 1

AJ .n Conformance Class n
A1.2 Optional Object-Types

B. Behavior Tests: responses to valid behavior by peer implementation.

B.1 Application Services Initiated by Tester
B.1.1 Alarm and Event Services
B.1.2 File Access Services
B.1.3 Object Access Services
B.1.4 Remote Device Management Services
B.1.5 Virtual Terminal Services

B.2 Application Services Initiated by Implementation Under Test

B.2.1 Alarm and Event Services

B.2.2 File Access Services

B.2.3 Object Access Services

B.2.4 Remote Device Management Services
B.2.5 Virtual Terminal Services

C. Behavior Tests: response to syntactically invalid behavior by peer implementation.
D. Behavior Tests: response to syntactically correct but inopportune events by peer implementation.

Figure 4

munication protocol standards was described. A set
of criteria for evaluating approaches to generating the
test suite was established, and several methods were
evaluated according to those criteria. All of the tech-
niques discussed have shortcomings. Semiautomated
approaches based on formal descriptions of the pro-
tocol are appealing but not sufficiently mature at this
time to be viable for developing a conformance test
for the ASHRAE protocol. A manual approach closely
following the guidelines presented in the ISO draft in-
ternational standard for abstract test suite specifica-
tion is recommended.

A rough outline for an abstract test suite for the
ASHRAE protocol was presented with comments on
necessary refinements. These refinements should be
made continuously as the standardization process
progresses. This will assist the committee in making
the conformance requirements of the standard clear
and enable a suitable conformance test suite to be
ready for use soon after the draft standard is complete.

ASHRAE is in a fortunate position because the
experience gained and mistakes made in developing
other communication protocol standards can be as-
similated while the standard is still being developed.
Coupling the development of conformance tests to the
development of the protocol is an important part of
this process.

REFERENCES

Aho, AV.; Dahbura, AT, Lee, D.; and Uyar, M.U. 1988. “An
optimization technique for protocol conformance test
generation based UIO sequences and rural Chinese
postman tours.” Proceedings of the IFIP WG 6.1 Eighth
International Workshop on Protocol Specification, Test-
ing, and Verification. Protocol Specification, Testing, and
Verification, VIII. North-Holland, pp. 75-86.

Bochman, G.V., and Sarikaya, B. 1982. “Some experience
with sequence generation for protocols.” Proceedings of

1139

the IFIP WG 6.1 Second International Workshop on Pro-
tocol Specification, Testing, and Verification. Protocol
Specification, Testing, and Verification, Il. North-Holland.

Bremer, J.: Mondvai, G.; Tarnay, K.; and Tibor, T. 1984.
“Some experiences with test sequence generation in ap-
plication layer.” Proceedings of the IFIP WG 6.1 Fourth
International Workshop on Protocol Specification, Test-
ing, and Verification. Protocol Specification, Testing, and
Verification, IV. North-Holland, pp. 623-636.

Bushby, S.T., and Newman, H.M. 1988. “Standardizing en-
ergy management and control system communication
protocols.” ASHRAE Journal, Vol. 31, No. 1, January, pp.
33-36.

Chow, T.S. 1978. “Testing software design modeled by fi-
nite-state machines.” IEEE Trans. Software Engineering,
Vol. SE-4, No. 3, pp. 178-187.

Favreau, J.P., and Linn, R.J. 1987. “Automatic generation
of test scenario skeletons from protocol specifications
written in ESTELLE.” Proceedings of the IFIP WG 6.1 Sev-
enth International Workshop on Protocol Specification,
Testing, and Verification. Protocol Specification, Testing,
and Verification, VII. North-Holland, pp. 191-202.

Friedman, A.D., and Menon, P.R. 1971. Fault detection in
digital circuits, p. 100. New York: Prentice-Hall.

Friedman, A.D., and Menon, P.R. 1975. Theory and design
of switching circuits. Computer Science Press.

Gonec, G. 1970. “A method for the design of fault detection
experiments.” IEEE Transactions on Computers, Vol. C-
19, No. 6, pp. 551-558.

Hengeveld, W., and Kroon, J. 1987. “Using checking se-
quences for OS| session layer conformance testing.” Pro-
ceedings of the IFIP WG 6.1 Seventh International
Workshop on Protocol Specification, Testing, and Verifi-
cation. Protocol Specification, Testing, and Verification,
VIl. North-Holland, pp. 435-449.

Hsieh, E.P. 1971. “Checking experiments for sequential ma-
chines.” IEEE Transactions on Computers, Vol. C-20, No.
10, pp. 1152-1166.

ISO. 1987a. ISO Draft International Standard 9074, “Infor-
mation processing systems—open systems interconnec-
tion—ESTELLE—a formal description technique based



on an extended state transition model.” Available from
ANSI, 1400 Broadway, New York, NY 10018.

1SO. 1987b. ISO Standard 8824, “Information processing
systems—open systems interconnection—specification
of abstract syntax notation one (ASN.1).” Available from
ANSI, 1400 Broadway, New York, NY 10018.

ISO. 1987c. SC 21/N2001, “Working draft of OSI conform-
ance testing methodology and framework, addendum to
part 2: testing and FDTs.” International Standards Or-
ganization. Available from ANSI, 1400 Broadway, New
York, NY 10018.

I1SO. 1988a. ISO DIS 9646-1, “Information processing sys-
tems—open system interconnection—OSI conformance
testing methodology and framework—part 1. general
concepts.” International Standards Organization. Avail-
able from ANSI, 1400 Broadway, New York, NY 10018.

1SO. 1988b. ISO DIS 9646-2, “Information processing sys-
tems—open system interconnection—OSI conformance
testing methodology and framework—part 2: abstract
test suite specification.” International Standards Orga-
nization. Available from ANSI, 1400 Broadway, New York,
NY 10018.

ISO. 1988c. ISO Draft Proposal 9646-4, “Information pro-
cessing systems—open system interconnection—QSl|
conformance testing methodology and framework—part
4: test realization.” International Standards Organization.
Available from ANSI, 1400 Broadway, New York, NY
10018.

Linn, R.J., and McCoy, W.H. 1983. “Producing tests for im-
plementations of OSI protocols.” Proceedings of the IFIP
WG 6.1 Third International Workshop on Protocol Spec-
ification, Testing, and Verification. Protocol Specification,
Testing, and Verification, Ill. North-Holland, pp. 505-520.

Mathews, R.S.; Muralidhar, K.H.; and Schumacher, M.K.
1986. “Conformance testing: operational aspects, tools,
and experiences.” Proceedings of the IFIP WG 6.1 Sixth
International Workshop on Protocol Specification, Test-
ing, and Verification. Protocol Specification, Testing, and
Verification, VI. North-Holland, pp. 135-149.

Muralidhar, K.H. 1987. “MAP 2.1 network management and
directory services test system.” Proceedings of the IFIP
WG 6.1 Seventh International Workshop on Protocol
Specification, Testing, and Verification. Protocol Speci-
fication, Testing, and Verification, VII. North-Holland, pp.
359-369.

Naito, S., and Tsunoyama, M. 1981. “Fault detection for se-
quential machines by transition-tour.” Proceedings, IEEE
Fault Tolerant Computer Conference.

Nightingale, J.S. 1981. "A benchmark for implementations
of the NBS transport protocol.” National Bureau of Stand-
ards Report No. ICST/HLNP 81-20, September.

Nightingale, J.S. 1982. "Protocol testing using a reference
implementation.” Proceedings of the IFIP WG 6.1 Second
International Workshop on Protocol Specification, Test-
ing, and Verification. Protocol Specification, Testing, and
Verification, /. North-Holland, pp. 513-520.

NIST. 1988. “A test system for implementations of FTAM/
FTP gateways: final report: part 3: annex 8, test cases.”
Report No. ICST/SNA—88/6. Gaithersburg, MD: National
Institute of Standards and Technology.

Rathgeb, E.P. 1987. “Protocol testing for the ISDN D-channel
network layer.” Proceedings of the IFIP WG 6.1 Seventh
International Workshop on Protocol Specification, Test-
ing, and Verification. Protocol Specification, Testing, and
Verification, VII. North-Holland, pp. 421-434.

Sabnani, K., and Dahbura, A. 1988. “A protocol test gen-
eration procedure.” Computer Networks and ISDN Sys-
tems, pp. 285-297.

1140

Sarikaya, B., and Bochman, G.V. 1984. “Synchronization
and specification issues in protocol testing.” IEEE Trans-
actions on Communications, Vol. Com-32, No. 4, April,
pp. 389-395.

APPENDIX A
A Sample Conformance Test Case

This appendix is an example of a more detailed de-
scription of one test case that might be included in the test
suite. It would be included in section A.1 of the outline in
Figure 4. The purpose of this test case is to verify the support
of a mandatory object type called the “"EMCS device.” This
particular object type will be included in the standard and
was chosen for this example because its properties are, for
the most part, self explanatory. No knowledge of the details
of the SPC 135P deliberations or a detailed specification of
the object type are needed to understand what is intended.

Most objects will have at least some properties that
can be written by remote devices. Testing support for these
objects will, in part, require writing and then reading several
values to each of these properties to be sure they are sup-
ported over the entire range specified in the standard. The
Device Object Type is different in that its purpose is to con-
vey information about the configuration of the device. To test
for support of this object type, it is only necessary to read
all of the properties and ensure that each response is valid
and consistent with information provided in the protocol im-
plementation conformance statement (PICS). The PICS de-
scribes the portions of the standard with which the
implementation claims to conform and which allowed op-
tions have been selected.

Assume the object has the following properties:

Property Data Type (value)
Property: Object_Identifier EMCSObjectldentifier ("VAV
trl 101")

Property: Object _Type EMCSObjectType (EMCS—
DEVICE)

Property: System__Status ~ EMCSDeviceStatus
(OPERATIONAL)

Property: Vendor—_Name CharacterString (“XYZ
Controls”)

Property: Model__Name
Property: Firmware_
Revision

Property: Application—
Software__Version
Property: Location

CharacterSrring (“VAV 100")
CharacterString (1.0")

CharacterString (2-1-88")

CharacterString (“Room
101")

CharacterString (")
CharacterString (“1.0")

Property: Description
Property: Protocol_Version

Property: Protocol— Integer (2)
Conformance—Class

Property: Protocol— Set of EMCSService
Services—_Supported (ReadProperty,

WriteProperty . . .)

Set of EMCS ObjectType
(EMCS_DEVICE,
ANALOG__INPUT,
ANALOG_OUTPUT,

Property: Protocol—
Object_Types—Supported

BINARY_INPUT,
BINARY_OUTPUT, LOOP)
Property: Max— Integer (32)
Message__Length__
Supported
Property: Window—_Size Integer (1)



TEST A11

Test Purpose:
Verify that the implementation supports the required
object type “Device Object” and that the values of
the properties are consistent with the PICS.

Test Description:
The conformance tester sends a ReadProperty
request PDU to the IUT in an attempt to read all of
the properties of the “"Device Object.” The response
is analyzed to determine consistency with the
standard and the PICS.

Expected Result:
A successful attempt to read all of the properties of
the “Device Object.” The values returned agree with
the PICS and all are within the range specified by
the standard.

Conformance Tester:
Issue a ReadProperty service request to the IUT
requesting the value of all properties of the Device
Object and specifying that the read access
specifications (the names of the properties) be
returned with the result.

IUT:
Process the ReadProperty service indication and
issue a response containing the requested
information.

Test Responder:
No action required in this test case.

It may be desirable to add a formalized description
of what is expected here using Abstract Syntax Notation
One (ISO 1987b). The details of how to do this are
beyond the scope of this paper. The information shown
here would become comments, and the formal description
would make up the actual test case specification. This
approach has been used recently for testing gateways for
electronic mail systems (NIST 1988).

APPENDIX B
BNF Grammar Notation

Computer languages are typically specified using a
formal notation for the grammar called Backus-Naur-Form.
The formal specification is made up of three parts: terminal
symbols, nonterminal symbols, and productions. The ter-
minal symbols can be thought of as the letters of the alpha-
bet in which the language is written. The nonterminal
symbols are place holders, which can represent zero or

14

more terminal symbols in a sentence of the language. The
productions define the rules for substituting terminal sym-
bols for the nonterminal symbols in an expression. As a set,
the productions define all of the possible sentences in the
language. A simple example may help make these ideas
clear.

Consider a language made up of the terminal symbols
(alphabet) {a, b, c, d} and the nonterminal symbols {S, A,
B}. Further assume that the productions are:

S > AaB
S=>B
A => bc
A=> Ad
B=>c

The production symbol, =, means that the nonterminal
on the left-hand side may be replaced by the string of ter-
minals and nonterminals on the right-hand side. Beginning
with the start symbol, S, successive substitutions are made
following the production rules until no more nonterminal sym-
bols remain. This successive substitution is called a deri-
vation. The result is a string or sentence in the language.
Examples of some derivations and their resulting strings for
this language are:

S>B>c

S = AaB = AdaB = bcdaB = bcdac

S = AaB = bcaB = bcac

S = AaB = AdaB = AddaB = bcddaB = bcddac

Typically the number of possible sentences is un-
bounded.

More information about the theory of computer lan-
guages can be found in textbooks on language theory of
compiler writing.

DISCUSSION

B. Sun, Flack & Kurtz Engineers, San Francisco, CA: Wil the
EMS conformance testing be a part of the ASHRAE EMS Protocol
Standard?

S.T. Bushby: It is not yet clear is the conformance tests will
become part of Standard 135. It might make sense as a matter
of convenience to ask the ASHRAE Standards Committee to allow
us to publish the conformance tests as a separate standard. Either
way, | do expect the conformance testing process to be included
in an ASHRAE standard.



