No. 3174

APPLICATION LAYER COMMUNICATION
PROTOCOLS FOR BUILDING ENERGY
MANAGEMENT AND CONTROL SYSTEMS

S.T. Bushby
ASHRAE Associate Member

ABSTRACT

The requirements for an industry standard communication protocol for energy management and
control systems (EMCS) are discussed in terms of the International Organization for Standardi-
zation's (ISO) Open Systems Interconnection (OSI) Basic Reference Model with emphasis on the
application layer.

The information exchange requirements of commonly used control strategies are analyzed to
develop a list of the minimum application level services required for an industry standard.
This list was augmented to include additional desirable services, based on several years of
experience building and operating an EMCS at the National Bureau of Standards.

Two public EMCS protocols, believed to be representative of the current state of commercially
available EMCS, are described and analyzed to determine their ability to meet the application
service requirements developed and their compatibility with the O0SI Reference Model. Both
protocols were found to meet the minimum requirements, but neither provides all of the
services considered desirable. Neither protocol was found to be compatible with the OSI model.

INTRODUCTION

The Arab oil embargo of 1973 and the resulting escalation in world prices for primary energy
resources caused a major rethinking of the uses of energy in the United States and the western
world. One of the many sectors of the economy affected by this was the building industry. As
long as fuel and electricity prices were low there was little interest in modernizing climate
control systems in buildings. Sharp increases in energy costs stimulated a great deal of
interest in finding ways to provide occupant comfort while reducing costs. Much effort was put
into development of "energy management and control systems" (EMCS) in the late 1970s and early
1980s to meet this need.

The computer industry was undergoing rapid development during the same time period. Micro-
processor technology made large advances while prices dropped significantly, opening up many new
economically viable applications for microprocessor technology. One of these applications was
and continues to be EMCS. The early focus of EMCS research efforts was in the development of
direct digital control (DDC) techniques and algorithms to implement them. DDC equipment and
control algorithms are now readily available from many commercial sources. The trend in the
building industry now is toward distributed DDC systems where control functions are implemented
by a network of microprocessors. Other building services are also being integrated into these
microprocessor networks, such as security and fire systems.

Although microprocessor-based EMCS are now available from many manufacturers, there is at
the present time no industry standard for communication protocols. Most companies in the building
controls business have opposed development of standards on the basis that it would restrict their
ability to market a product with unique capabilities. It was also feared that standards would
lock the technology into the lowest common denominator of its present form and force all
manufacturers to produce equipment at a fixed level of mediocrity.

Steven T. Bushby is a research engineer in the Mechanical Systems and Controls Group, Building
Environment Division, Center for Building Technology, National Bureau of Standards, Gaithersburg,
MD 20899.

494

Pressure from customers not wanting to be locked into using a single vendor began to
mount. Some company managers began to decide that it may be a desirable marketing feature to
be able to interface with various companies’ equipment. With these developments the resistance
to standards began to fade. 1In January, 1987, the American Society of Heating, Refrigerating,
and Air Conditioning Engineers, Inc. (ASHRAE) approved formation of a committee to develop an
industry standard for EMCS communication protocols (EUN Feb. 23, 1987).

There is considerable controversy in the industry about whether such standards are a good
idea and what form they should take if they are adopted (EUN March 2, March 9, 1987). A great
deal of the controversy stems from a lack of consensus about what the scope of such a protocol
should be. There is much talk in the building industry about "intelligent buildings."
Intelligent buildings have computer systems which integrate control of many building services
including security systems, lighting systems, fire alarm systems, telephone communications,
data processing, and climate control systems. A future communication protocol standard will
probably have to address the possibility of integrating many building services into one
package.

This paper will address only protocols for climate control systems, usually referred to as
EMCS. An analysis of the application needs in the context of the International Organization
for Standardization’s (ISO) Open Systems Interconnection (OSI) Basic Reference Model, will be
made and two public EMCS protocols will be examined. Neither protocol conforms to the 0SI
Model, but they do represent the current state-of-the-art in commercially available systems.

DISTRIBUTED EMCS ARCHITECTURES

Distributed, microprocessor-based, energy management and control systems generally wutilize a
hierarchical control structure as depicted in Figure 1. The highest tier in the control
hierarchy will be referred to as the host or central control unit (CCU). This level provides
supervisory control functions, such as changing setpoint schedules or parameters used in the
control algorithms of lower level controllers. The CCU is also used to log performance data
and alarms, and serves as the operator interface of the EMCS.

The second tier contains controllers characterized by the ability to handle multiple con-
trol loops. These controllers are generally a microprocessor/multiplexor combination and are
called by various names. For the purpose of this paper, they will be referred to as field
interface devices, or simply FIDs. A FID may be used to provide multiple DDC loops or it may
be used to supervise a group of lower level controllers.

The lowest tier contains simple controllers designed to provide a single DDC loop. These
controllers are called unitary controllers and are often built into hardware devices like a
fan or compressor.

The distribution of software throughout the various levels of the control system may vary
from installation to installation. Two major factors in deciding where control software
should reside are the hardware capabilities of the microprocessors and the need to be able to
maintain control of equipment, even if it is not optimal control, in the event of a failure at
the supervisory level.

The communication architecture is completely distinct from the control hierarchy described
above. Two types of communication architecture may be found in current energy management and
control systems. The first closely follows the control hierarchy. The CCU communicates and
exchanges information, on a master - slave basis, with FIDs and UCs. There is no peer-to-
peer communication and no sharing of information between FIDs or unitary controllers.

The second type of communication architecture is shown in Figure 2. In this case peer-to-
peer communication is allowed and information may be shared by the various controllers. This
architecture can increase system reliability. A CCU of some sort is still needed to provide
an operator interface and supervisory control, but the CCU no longer controls communication
between processors on the network. This reduces the possibility for a single source failure
disrupting all network communication, making shared data and processing capability more
feasible. This architecture is not common, but a few systems are now available. It is likely
that this will become the standard approach in future systems.

495

COMMONLY USED CONTROL ELEMENTS AND THEIR INFORMATION EXCHANGE REQUIREMENTS

An analysis of the type and quantity of information to be exchanged in a network is a necessary
precursor to defining communication protocols. Several control algorithms commonly implemented
in building EMCS software are discussed below. A typical EMCS will combine several of these
algorithms into one unified package. Their purpose is briefly described and the information
exchange requirements for each is analyzed. Combining this information with the other special
functions required in a distributed EMCS will provide a basis for defining the application
specific services needed in an application layer protocol.

ECONOMIZER cycles are control algorithms for minimizing the use of air conditioning equip-
ment by using outdoor air for cooling a building’s interior when outdoor weather conditions
permit. Two basic types of economizer algorithms are used. A dry-bulb economizer utilizes
the outdoor and return air dry-bulb temperatures to position the outdoor, return, and relief
air dampers. An enthalpy economizer performs the same function, but the bases for the
control decisions are the enthalpies of the return and outdoor air. The enthalpy economizer
is more complicated and requires additional sensors, but it has been shown to save more
energy in some climates. A detailed description of economizer algorithms may be found
elsewhere (Kao 1983, Park et al. 1984, May and Kelly 1985, Spitler et al. 1987).

The enthalpy economizer can be used to define the information exchange requirements for
economizer cycles:

INPUTS OUTPUTS
temperatures: damper control actions
supply air, return air, chilled water valve actions
outdoor air, changeover,
set point
humidities:

return air RH (or dew point)

outdoor air RH (or dew point)
position sensors:

outdoor air damper

return air damper

relief air damper

chilled water valve
tuning constants:

eg. PID constants

sequence delay time

The economizer usually resides at the FID level of the control hierarchy. The values for
temperatures, humidities and positions are determined from the sensor outputs and control
signals are sent to device actuators.

Communication with the CCU level is needed to allow the operator to set scaling factors and
alarm limits for sensor outputs, and to pass data and alarms up to the CCU. Some sensor data
may also need to be exchanged between FIDs.

DUTY CYCLING and DEMAND LIMITING algorithms are used to cycle equipment on and off for
reducing electricity consumption during part load conditions and to switch electrical loads
off during peak utility rate periods respectively. A detailed description of these algorithms
is given by May (1983), Park (1984), and May and Kelly (1985). The information exchange
requirements are as follows:

INPUTS OUTPUTS

duty cycle interval on/off switching for
off period) effected devices
phase

minimum on time
minimum off time

Duty cycling/demand limiting software usually resides at the FID level of the control

hierarchy. All of the inputs are parameters which must be exchanged with the CCU level. The
outputs are control signals to device actuators.

496

TIME OF DAY CONTROL algorithms are used to initiate tasks at a particular time on specified
days (May 1983). Examples would be nighttime setback, weekend scheduling, and holiday scheduling.
This software usually resides at the FID level of the control hierarchy and the outputs are
on/off commands to controlled devices, starting and stopping of software tasks residing in the
FID, or changing parameter values. The information exchange requirements are:

INPUTS OUTPUTS
Task ID implement FUNCTION
FUNCTION

time
day (of week or year)

Task ID identifies which task is to be addressed and FUNCTION specifies what action is to
be taken. It is also necessary to be able to reset FID clocks from the CCU in order to
synchronize them.

OPTIMUM START/STOP algorithms use prediction techniques to determine the time of day to
shut equipment down, but still maintain building comfort levels until the end of the occupancy
period, or the time of day to start equipment to achieve comfort levels by the time the
occupancy period begins (Park 1983). There is considerable variation in the complexity of
the techniques used to determine the start/stop times. An optimum start/stop algorithm
might be implemented at either the supervisory level of the CCU or at the FID level. Typical
information exchange requirements would be:

INPUTS OUTPUTS

outdoor air temperature on/off switching for effected devices
zone air temperature

zone air temperature setpoint

hours of zone occupation

max. permissible zone temperature

min. permissible zone temperature

earliest permissible shut off time

There are functions that an application layer protocol needs to support in addition to the
requirements dictated by the control algorithms discussed above. These functions may not be
required in the sense that mechanical equipment cannot be controlled without them, but
experience operating an EMCS suggests that they are highly desirable and should be included in
a standard. The functions include:

1. Requesting a specific group of data values from the FID on a periodic basis
for the purpose of logging trends. In the extreme case this group of data
values would represent all sensors connected to the FID.

2. Remote reset capabilities to refresh FID software if it develops errors.

3. The ability to download software from the CCU to the FID or upload software
from FID to CCU.

4, Troubleshooting information from the FID in the form of indications of what
control actions the software is trying to execute, device status reports,
and a communications test.

5. Access control restrictions to prevent unauthorized changes to control

parameters.

THE ISO OPEN SYSTEMS INTERFACE MODEL

Establishing computer-to-computer communication between heterogeneous machines is a difficult
task. Different vendors use different data formats and different data exchange conventions.
Even within one vendor’s product line different models often communicate in unique ways. As
the use of computer to computer communication and networking proliferates, a one-at-a-time
special-purpose approach to communication software development becomes prohibitively expensive.
The only solution is to adopt appropriate standards.

497

Before standards can be developed, the complex problem of heterogeneous, distributed
communication needs to be broken down into manageably sized tasks. A structure or architecture
defining these tasks must be developed. 1In 1977, the ISO formed a committee to address this
problem and define a reference architecture to be used for developing communication standards.
The result of this work is the Open Systems Interconnection - Basic Reference Model (ISO 1984) .

The ISO committee chose to adopt a seven-layered architecture as shown in Figure 3. The
layers are arranged in a hierarchical fashion with each layer performing a unique function
necessary for the communication task. A given layer relies on lower layers to perform more
primitive functions. The key to understanding layered architecture is to think of each layer
as a black box with interfaces on both sides of the box carefully defined. The user'’s appli-
cation program connects to the OSI application layer and communicates with a second, remote
user application program. This communication appears to take place between the two applications
as if they were directly connected through their application-to-0SI application layer interfaces.
No knowledge or understanding of the other layers is required. In a similar manner, each layer
of the protocol relies on lower layers to provide communication services and establishes a
virtual peer-to-peer communication with its companion layer on the other system. The only
real connection between the two systems takes place at the physical layer.

Because any given layer of the protocol interfaces only with the layers above and below,
changes in the protocol become easier. Ideally, the layers should be defined such that
changes in one layer do not require changes in the other layers. 1In practice, changes in one
layer may sometimes require modification to the interface with an adjacent layer.

It is beyond the scope of this paper to describe the features of each layer. Numerous
descriptions can be found in the literature and ISO standard 7498. It is the highest layer,
the application layer, which is the most appropriate place to begin EMCS protocol development.
It is here that the specific requirements of EMCS are addressed. After these requirements
are understood, it will become more clear what services from lower layers in the 0SI model
will need to be implemented.

THE 1SO APPLICATION IAYER STRUCTURE

An "application" may be defined as a set of information processing requirements. An
"application process" is a logical element within a system which performs the information
processing required for a particular application. In a distributed system, each distributed
portion of the application is a separate application process (Bartoli 1981). 1In the context
of EMCS, the application is to control the climate of a building or a group of buildings,
while minimizing cost. Each element in the distributed architecture (CCU, FID, UC) is a
distinct application process.

Each application process has associated with it a universe of information, which can be
thought of in terms of its semantics or the meaning of the information, and its representation
or syntax. In order for two application processes to communicate with each other there must
be an overlap or sharing of at least a portion of these semantics. This amounts to both
parties having some knowledge and understanding of the topic to be discussed. This concept
is illustrated in Figure 4.

Each application process in the EMCS has its own distinct universe of information, only
a portion of which will be in common with a different application process. That common
portion may itself wvary, depending on which of the other application processes it is
communicating with. For example, the semantics that a FID has in common with a second FID
may be different from the semantics that the same FID has in common with the CCU. All that
is required is that the common region contain semantics that are necessary and sufficient to
establish control of a distributed EMCS.

The application layer of the OSI model provides for the definition of application service
elements which are responsible for the transfer of information in the overlapping region of

Figure 4. Thus, a communication protocol standard only addresses that portion of the
application processes which overlap. It is entirely possible to have an open protocol standard
and still permit individual companies to maintain proprietary software in each of the

application processes which make use of the information exchanged. The protocol merely
provides a common syntax which permits exchange of the semantics which are in common for the
two application processes.

498

The application entity structure considered by the ISO is shown in Figure 5. Two
categories of service elements are recognized: common application service elements (CASE):
and specific application service elements (SASE) (Bartoli 1981). Common application service
elements provide capabilities required for information transfer which are independent of the
nature of the application. Specific application service elements provide information transfer
capabilities to satisfy the particular needs of a specific application process. The user
element represents capabilities needed as an interface between the application layer service
elements and the remainder of the application process.

Common application service elements defined by the ISO can be divided into niné*categories
based on the services they provide. These categories are listed in Table 1 along with their
associated service primitives (Bartoli 1981). The EMCS information exchange requirements
discussed in the previous section provide a basis for determining the services which need to be
provided by specific application service elements. These services are summarized in Table 2.

Two public protocols for EMCS's will be examined to determine how well they provide the
capabilities identified as necessary for EMCS. One protocol will be referred to as protocol
A and the other as protocol B. The last column in Table 2 indicates which application
service elements are provided by each protocol.

DESCRIPTION OF PROTOCOL A

The developer of protocol A made a corporate decision to install distributed direct digital
control energy management systems in some of the company’s facilities based on expectations

for improved performance and reduced energy costs. Specifications were drawn up based on
the use of personal computers (PC) as field processors. These processors are linked together
along with a mainframe host computer via a communication network. The specifications and

protocols developed for in-house use were made public with the intent that control system
vendors might adopt protocol A for their commercial systems, giving the company a presence
in the EMCS market (IBM 1985).

Protocol A uses a master-slave approach to control access to the network. The mainframe
host computer serves as the master providing direction to one or more PC-DDC building control
systems. The system architecture is shown in Figure 6. The host communicates with PCs over
multidropped leased telephone lines using either synchronous or asynchronous communication
protocols.

Protocol A defines a set of "application messages" which can be imbedded as data in the
transmission. The same application messages are used in both the synchronous and asynchronous
versions of the protocol. This is a step towards a layered architecture in the sense that a
distinction is made between the application messages and the means of transmitting the
message. The application message is self contained and can be used with either transmission
scheme without change.

Protocol A Application Message Services

Protocol A specifies an application message with the following format:

8 bytes 2 - 258 bytes

1 byte 1 byte 2 bytes 2 bytes 2 bytes

LR +------ +------- e R +
| OSN | STIN | CFC | ACPC |reserved|
- +------ +------- e R e +
where: OSN - originating system number
STN - system transmission number (used in messages initiated by host)
CFC - communication function code (1 = no response expected;

2 = response expected)
ACPC - application command processor code, essentially a code to indicate the type
of application service message which is to follow

499

Table 3 is a list of application message services provided by protocol A.

DESCRIPTION OF PROTOCOL B

A second company has released a draft EMCS protocol which will be referred to as protocol B
(Fisher 1986). Protocol B is described by its author as a generalized version of a previous
"standard" wused for four years in the company’s EMCS products.

Protocol B is based on a master-slave medium access control. In terms of the protocol
definitions, there is a "host" which is a requester of information and represents either
human operators or control programs. There are also one or more "targets" which are field
devices or systems which are being queried or commanded. Communications are always initiated
by the host, even for alarm and exception reporting. Messages are composed of ASCII characters
transmitted serially using standard asynchronous data frames. The transmission medium may be
either dial-up commercial telephone lines or a multidropped hard-wired bus.

Protocol B provides for two basic types of access to a target: protocol transactions, where
the host sends a query in a specified format and a single target responds, and interactive
terminal mode. Interactive terminal mode is initiated by the host and permits the host to
emulate an interactive dumb terminal connected to the target. A simple control sequence is
used to terminate this mode.

One of the most innovative features of protocol B is the use of symbolic-referencing for
data access.l 1In the context of this paper, symbolic referencing refers to using a symbol, or

name, to reference a particular sensor value or algorithm parameter. Symbolic-referencing
relieves the host from maintaining tables of sensor addresses in the various and possibly
dissimilar target systems. All sensor points and control parameters are represented by a
twelve-character point name. Symbols also have properties which are given two-character

names. A simple example would be a temperature sensor point which might have properties for
Current Temperature (CT), High Alarm Limit (HL), and Low Alarm Limit (LL). The host can request
information by specifying the name and the desired property. Knowledge of the physical point
addressing structure of the target is unnecessary. However, requesting information by
specifying a target port address is allowed in the protocol.

Protocol B provides for a "name cache" to efficiently transfer a group of data values which
need to be fetched repeatedly. Once the cache has been set up it is possible to retrieve all
of the values with one short message (9 bytes). This significantly reduces the protocol
overhead compared to fetching the values by repeated use of the read point command. It also
significantly reduces the number of transactions on the network which can improve overall
network performance if high loading conditions exist.

General Message Format

Messages from the host to any given target begin with the ASCII semicolon (hex 3B) and end
with the ASCII carriage return (hex OD). The initial character of the response message from
the target varies depending on the command from the host, but always terminates with an
ASCII carriage return. The general message format for host commands is:

;UXX...cccct
where:
; = the start of message indicator
u = unit number (This is the only exception to
the seven bit ASCII character convention.
All 8 bits are utilized allowing unit codes
from 80 Hex to FF Hex)
XX = command code as a two hex digit number
ce command dependent part
ccece CRC16 of all bytes from the ; up to the CRC bytes
t = message terminator (ASCII carriage return

Under appropriate circumstances, error codes are returned in response to host commands.

The terminology used 1in the protocol specification is "object oriented data access."
"Objects" are defined with specified "attributes." This terminology, however, suggests
features which do not appear to be included in the protocol and therefore is not used in
this paper.

500

Protocol B Command Descriptions

In protocol B the command code and its associated data correspond to the role of an application
layer service. Table 4 is a brief description of the host commands defined in protocol B.
All commands need not be implemented in all targets. Any command sent to a target that does
not implement that command will generate an error response (Fisher 1986).

ANALYSTS OF PROTOCOLS A AND B

Table 2 includes a comparison between the list of desired application services and the
corresponding services actually implemented by the two public protocols examined. Neither of
the protocols presented supply all of the services desired and some of the services that are
provided may not be implemented in an optimal way. However, both of these protocols can be
implemented in such a way as to provide all essential EMCS services. This is to be expected
since they are actually being used in operating systems.

The symbolic-referencing approach permitted in protocol B is attractive from the standpoint
of interconnectivity of field wunits supplied by different vendors. It eliminates the need to
maintain tables of physical point addressing structure in the host for each FID and UC in the
network. Host software based on a consistent set of symbol names and characteristics could
communicate with any field device without any knowledge of the instrumentation wiring in the
field device.

Symbolic-referencing can also simplify the process of passing control parameters.
Instead of specifying table formats to pass sets of related parameters from CCU to FID for
each control algorithm that might be implemented, these parameters could be considered as
properties of a symbol defined for the algorithm being implemented. For example, PID control
constants could be handled by a symbol, "PIDCONTROL", with properties "PC" (proportional
constant), "IC" (integral constant), "DC" (derivative constant). The advantage is that it is
not necessary to have a standardized table format and a specific application service to handle
each case. A small number of application services which exchange values for symbol properties
can be used for nearly all parameters. This approach will, however, require standardized
symbols and properties.

Both of the protocols examined have some serious shortcomings. Master slave medium access
control is a simple scheme but it is also restrictive. Peer-to-peer communication between
field devices can be very advantageous from an instrumentation perspective because it
permits sharing of data from sensors. High quality sensors can be used, where appropriate, to
increase reliability and the cost can be distributed over all of the devices which need that
particular data. In a carefully designed network with peer-to-peer communication, the impact
from failure of a single processor can be kept to a minimum.

Both protocols have ignored current LAN technology and the seven layer OSI reference model
for communication protocols. Protocol B has specifically rejected the OSI seven layer model
for communication protocols. The specification states (Fisher 1981):

"[Protocol B] is in no way an attempt to be completely universal, such as the OSI
seven layer communications model...[protocol B] bi-passes the seven layer protocol
by using a single layer Functional Architecture. MAP and TOP do not address
functional architectures, except to provide an undefined ’'applications layer’. In
this regard, it would be possible to utilize a specialized applications layer for
a MAP network which permitted [protocol B] devices to communicate over MAP. This
aﬁgﬁoach is similar to using the space shuttle to cross the street."

Ignoring what the rest of the world is doing with respect to communication protocols may
have some short term benefits but it does not give long term flexibility and durability, which
is needed for an industry standard.

It is true that all of the services of the OSI reference model are probably not needed for
EMCS applications. However, it is premature to reject the OSI model out of hand and
start from scratch. A more reasonable approach would be to carefully analyze the current an
future requirements of a building management control system protocol standard and see which
layers of the OSI model may apply. A protocol can then be developed which is based on these
layers and in effect null the unused layers. This collapsed communication architecture
approach was used to develop Enhanced Performance Architecture (EPA) and mini-MAP (SME 1987).

501

The advantages of this approach are twofold. Such a standard would be more easily modified
as the scope of the application or communication technology changes. Only layers that are
affected need to be changed, leaving most of the standard intact. A variety of physical
mediums could also be accepted in the standard without changing higher layers. This approach
was adopted by ANSI and IEEE in the 800 series LAN standards. The second advantage is
potential hardware cost reductions due to economies of scale if printed circuits being
manufactured for LAN applications can be incorporated into EMCS technology.

If lower layers of an EMCS protocol are compatible with LAN standards, this would make it
possible for the EMCS network and other LAN applications to be combined into a single
communication system. This may not be desirable in all situations, but in others it could
help reduce the effective cost of installing a modern EMCS.

CONCLUSIONS

Energy management and control systems have been discussed in terms of the information exchange
requirements for distributed processing. The Application Layer of the ISO Open Systems
Interface Model was discussed and a set of specific application service elements developed
for EMCS. Two public communication protocols were examined in the context of the application
requirements and the OSI Reference Model.

The two protocols were found to be adequate to meet the essential requirements of energy
management and control systems but lacked some desirable application features. Neither is
structured in terms of the OSI Reference Model and as a result offer neither the flexibility
that a layered standard would have for future revision, or compatibility with other LAN
applications that could bring hardware cost reductions due to economies of scale.

The process of developing an industry standard has begun under the auspices of ASHRAE. The
standard committee can best serve the industry by carefully examining the current and future
requirements of the application, examining current protocols in light of these requirements,
taking the best features of the current protocols and recasting them in a structure compatible
with both the ISO Model and other developing network technologies.

REFERENCES

Bartoli, P. D. 1981. "The Application Layer of the Reference Model of Open Systems Inter-
connection." Proceedings of the IEEE, Vol. 71, No. 12.

Energy User News February 23, 1987. "Standardizing EMCS Protocols:Panel Discussion - Part I."

Energy User News March 2, 1987. "Standardizing EMCS Protocols: "Standardizing EMCS Protocols
Panel Discussion - Part II."

Energy User News March 9, 1987. "Standardizing EMCS Protocols:Panel Discussion Part III."

Fisher, D.M. 1986. "Public Host Protocol Guidelines Version 6. "American Auto-Matrix, Inc.,
One Technology Drive, Export, PA.

IBM. "IBM Facilities Automation Communication Network Sﬁecification,' Revision: January 18,
1985." IBM-NAD, Facilities Automation System Center, Atlanta Georgia.

ISO. 1984. 1ISO Standard 7498, *"Information Processing Systems-Open Systems Interconnection-
Basic Reference Model." International Standards Organization. Specifications available from
ANSI, 1400 Broadway, New York, New York 10018.

Kao, J., 1983. "Strategies for Energy Conservation for a Large Office Building." National
Bureau of Standards. NBSIR 83-2746.

May, W.B.; Kelly, G.E., 1985. "Verification of Public Domain Control Algorithms for Building
Energy Management and Control Systems." National Bureau of Standards, NBSIR 85-3285.

May, W.B., 1983. "Time of Day Control and Duty Cycling Algorithms for Building Management and
Control Systems." National Bureau of Standards, NBSIR 83-2713.

502

Park, C., 1983. "An Optimum Start/Stop Control Algorithm for Heating and Cooling Systems in
Buildings." National Bureau of Standards, NBSIR 83-2720.

Park, C., 1984. "Demand Limiting Algorithms for Energy Management and Control Systems."
National Bureau of Standards, NBSIR 84-2826.

Park, C.; Kelly, G.E.; Kao, J., 1984. "Economizer Algorithms for Energy Management and Control
Systems." National Bureau of Standards, NBSIR 84-2832.

SME.W1987. "Manufacturing Automation Protocol Specification Version 3.0." General Motors.
Published by Society of Manufacturing Engineers, One SME Drive, P.0.Box 930, Dearborn, MI 48121.

Spitler, J.D.; Hittle, D.C.; Johnson, D.L.; Pederson, C.0., 1987. "A Comparative Study of
the Performance of Temperature - Based Economy Cycles." ASHRAE Transactions. Vol 93, pt. 2.

TABLE 1

Summary of ISO Common Application Service Elements

Services Required Service Elements
Origination A _ASSOCIATE
Termination A RELEASE

A USER_ABORT
A_PROVIDER_ABORT

Context A_CONTEXT DEFINE
A_CONTEXT SELECT

Interruption A_SUSPEND
A RESUME

Information A _TRANSFER

Transfer A_TRANSFER_CONFIRM
A_TRANSFER EXPEDITED
A_PURGE

Status A _STATUS

A_EXCEPTION REPORT

Dialogue Control A _PASS_TOKEN
A REQUEST_TOKEN

Synchronization A_MARK
A _SYNCHRONIZE
A RELEASE_MARK

Message ’ A SEND_MESSAGE

503

TABLE 2

Summary of Specific Application Service Element Capabilities

Services Required Service Elements Implemented By
Data Transfer A_REQUEST_POINT VALUE , Bt

A_REQUEST GROUP_VALUES
A_REQUEST ALL_VALUES
A_SEND_POINT VALUE
A_SEND_GROUP_VALUES
A_SEND_ALL_VALUES

e
ot w W w
-+

Parameter Transfer A_REQUEST TIME OF DAY TABLE A*, B*
A_REQUEST DUTY CYCLE TABLE A*, B+
A_REQUEST PID TABLE A¥, Bt
A_REQUEST RESET SCHEDULE A*, B+
A_REQUEST ALARM LIMITS A*, Bt
A_REQUEST_SCALING_FACTORS A¥, Bt
A_SEND_TIME_OF DAY TABLE A*, B
A_SEND_DUTY CYCLE_TABLE A*, Bt
A_SEND_PID_TABLE A*, Bt
A_SEND_RESET SCHEDULE A*, Bt
A_SEND ALARM LIMITS A¥, Bt
A_SEND_SCALING FACTORS A%, Bt
Alarm Reports A_SEND_ALARM A, B
A_ERROR_REPORT A, B
Set Clocks A_SET TIME A, B
Troubleshooting A _COMM TEST A, B
A_CONTROL_ECHO_ON
A_CONTROL_ECHO_OFF
A _REBOOT_FID B
A_DOWNLOAD_SOFTWARE B
A_UPLOAD_SOFTWARE B
Access Control A_AUTHENTICATION
A_ACCESS_DECISTON
Broadcasting A_BROADCAST "B
Event Messages A_SEND_EVENT MESSAGE A, B

* A general file transfer procedure is defined in the protocol.
Presumably, it can be used in some manner to perform these functions.

* These services are all combined into one request and one send service
which accepts a symbol and a property as arguments.

504

Application Message Services Provided by Protocol A

Service

IPL and control

Host-PC-COS
reference table

Host output command
request
PC all points

value request

PC point value
request

PC point value
response

Event messages
Unsolicited PC
reports

Host/remote data
request

Host/remote data
transfer

Communications test

Application response

TABLE 3

Description

Host sends current time and date
to PC to synchronize PC and
subsystem clocks

Host transmits a reference table
defining the points to be used in
the control system

Host commands an output point
on the PC

Host requests transmission of the
values of all points defined in
the system

Host requests transmission of the
values of all points in a specified
list

Response to PC point value request

PC sends an unsolicited event
message to host (eg. alarm)

Reports in the form of text sent
to host for printing

Host or PC requests data from the
the other.(eg. time,COS table, data)

Transmit data from a resident file
in response to a host/remote data
request

Tests the communications link
between host and PC

This message is used by the host/PC
to respond to various messages by
indicating error states regarding
the application message received

505

Length
bytes

10-250

12

8-128

12-244

10-N

8-N

2-46

8-240

TABLE 4

Application Services Provided by Protocol B*

Service
Read Channel

Write Channel

Read Point
Write Point

Acknowledge
Transaction

Read Next
Channel Attribute

Read Next Point
Attribute

Read Storage
Record

Write Storage
Record

Read Value and
Status

Read Message Text
Set Time and Date
Restart

Say Hello

Open Storage File
Close Storage File

Initialize Name
Cache

Fetch Through Cache

Broadcast Commands

Description
Read an attribute of a hardware point

Write to an attribute of a
hardware point

Read an attribute of a named point
Write an attribute of a named point

Acknowledge the occurrences of a
specified alarm transaction

Read the next attribute of a hardware
point after the named one

Read next attribute of named point
after the attribute specified

Read 128 byte record from currently
open storage file

Write 128 byte record to currently
open storage file

Retrieve the named attribute of a
point and its alarm status

Read queued message text

Set current date and time

Cause a "soft" restart of FID
Communications Test.

Open specified storage file.

Close currently open storage file.
Preset a specified slot in a name
cache to a certain point name and

attribute name.

Fetch all of the values specified by
active cache slots

* Virtual terminal services are not included

506

Length
bytes

17

25

23
31

13

17

23

13

270

23

21

26
10

24

CCu

—— — — — — — — — — — — — — — — | — — —— — — — —— — — —

FID FID

— — cm— — — — — o— — — — —— o— — — — om— —— — — — — — — — —

ucC ucC uc

Figure 1 Hierarchical control structure for a typical EMCS. Note: CCU-central control unit, F10-
field interface device, UC-unitary controller.

CCu

FID ‘ - FID

ve;

Figure 2 Advanced EMCS communication architécture with peer-to-peer communication

507

‘UOUIDIIUNUUULOD 40f AL4DSSIIIU
24D $3552004d u0DIN)AdD UIIMIPG SINUDWIS PIIDYS 24nS1d

$S8SS8001d uonedlddy
ueamieg
sojjueweg pateys

2 $S820.d
uoneanddy
0} juersiey
sonuewes

"]apow 22u343fal1 [SO Y] [0 2.n1I3JYIID PaLIAD] Y] § 24nS1yg

C W3LSAS I W3LSAS
leoshug | 90ueuox3 reotsAud
8 [emoy X
yunn o qui
c 4
Y}OMISN YIOMIBN
€ ———-- €
Lodsuel| L uodsues)
v T R
uoisses | uoissas
s [S
uogejuesed | uonjejuesald
9 9
uopeoyddy | OUBUX3 I yopeoyddy
L Jueseddy L
weibold wesboid
esn |sn

T 508

'y 1020704d 40f 24n3I211Y04D WdISAS 9 24nI1q

HOMISN SUOHEIILNUALIOYD — — —
aAe|g/Areinqu) - S

ISOH - H
pusban
A1ua :SB&E&G OS] Y1 fo aunpnayg ¢ 2unS1y
o 10 10 10
oad oad oaa oad
i i " "
| ! [1
e _ = B R -- - B IR]
— .
! (ASVO) swuews|3 8dAeS
uonedyddy uouruoD
sexaidiniy
I
|
|
|
110 110 !
I (3SVS) Ssiuewe3 adAIes
o oad ! uoneayddy oyoeds
“ “ |
| H
“ J L son
b-mmm - _ﬂ od \wluu_ﬂ sWeureW

DISCUSSION

D. Schwenk, Principal Investigator, U.S. Army Corp of Engineers, Champaign, IL: What is the impact of your
work on ASHRAE’s development of a building energy management standard protocol and how long do you think it
will be until a protocol is available?

S. Bushby: The ASHRAE standards project committee (SPC) to which you referred has several active working
groups. One of these groups is called the Application Services Working Group. The ideas presented in this paper are
directly related to the activities of this working group and have been presented to them. The working group has
already taken action to adopt a set of “functions” that need to be provided by the application layer of the protocol
that correspond almost exactly to what I have presented here.

It is impossible to predict when a draft standard will be completed. I can say that all members of the SPC are active
and contributing to the effort. Good progress was made in the first year but much work remains to be done.

P.R. Armstrong, Partner, Colorado Energy Associates, Ft. Collins, CO: “Command Primitives” were mentioned in
reference to the “state’ of various communications services. The “state machine” formalism was also mentioned in
this regard. Could you please elaborate?

Bushby: The question refers to remarks I made about the next step in the process of developing an application layer
protocol, that is, a more formal description of what the application services are and precisely how they work. A
finite state machine is a commonly used abstraction that describes how a process works, in this case a protocol
service implementation. A series of logical “states” are defined that describe the possible relationships between the
communicating entities. Command primitives cause the transition from one state to another. Using these
abstractions, a map can be made that describes the dynamic interactions that can take place during a
communication. This type of analysis is useful both for describing the dynamic interactions mvolved and also for
checking the service specification for internal consistency and completeness.

510

