
NETWORKED CONTROLS

For example, the sequences of
letters in “Bad” and “Boot” in
German mean “Bath” and
“Boat” in English. The same is
true for machines: they have to
know the meaning of the mes-
sages they receive to act properly
upon them.

The argument that an alpha-
bet and an interface connection
are enough to enable communi-
cation has “evolved” to the
equally senseless assertion, heard
surprisingly often these days,
that standards such as BACnet
are unnecessary because “we now
have XML and the Web.”

The problem, again, is that
these technologies, by them-
selves, are far from adequate to
achieve communication, let
alone interoperability. The eX-
tensible Markup Language
(XML) is simply a way to repre-
sent data in a structured form
that allows the component parts
to be easily broken up or
“parsed” using widely available
software. Yet without knowing
what each of the parts means, the
parsed data is useless. The World
Wide Web, one of the great tech-
nological developments of our

2

BACnet, TCP/IP, XML,
Java, HTTP, OPC,
CORBA, LON, Ether-
net, MS/TP—the buz-

zwords go on and on! But what do
they really mean and how do they
affect building automation and
control networks and the ability of
the equipment on these networks
to work together in a meaningful
way—to “interoperate?” The an-
swer is that the technologies by
themselves guarantee very little; it
is how they are applied that
counts. First and foremost, there
have to be standards and they have
to be used in reasonable ways.

I vividly remember the press
conference in 1987 held to an-
nounce that the American Soci-
ety of Heating, Refrigerating and
Air-Conditioning Engineers
(ASHRAE) was forming a com-
mittee to develop a standard pro-
tocol for building automation
and control, a standard we now
know as BACnet. I had spent
about 15 min explaining the pro-
ject and answering various ques-
tions when a somewhat impa-
tient spectator stood up in the
back of the room and said, “I
don’t see why we need this stan-

dard. We already have ASCII
and RS-232!” While both of
these standards were, and are,
important, much more is needed
for devices to be able to commu-
nicate. To see why, let’s look at
the meaning of the terms.

ASCII is simply a set of nu-
meric codes for representing let-
ters and other common charac-
ters, while RS-232 specifies a
way to hook computers and
modems together. When we
consider these definitions to-
gether, the spectator’s statement
essentially translated as, “We
don’t need a standard language
for communication because we
already have an alphabet and a
way to get the letters from one
place to another!”

However, communication re-
quires far more than just an al-
phabet. The attribute that makes
“Bad” significantly different
from “Boot” is not the fact that
one word has three letters and
the other has four, but that the
two words have different mean-
ings. Moreover, we can only un-
derstand the meanings if we
know the language from which
the letter combinations derive.

F E A T U R E

Control Networks

and

Interoperability
Interoperable systems for building automation and control

applications are easier than ever to implement. The key is the

appropriate use of standards that have been specifically designed

for the tasks at hand.

by H. MICHAEL NEWMAN
Manager

Utilities Computer Section, Cornell University

H. Michael
Newman is the
manager of the

Utilities Computer
Section at Cornell

University in
Ithaca, N.Y. He is

a past chairman
of ASHRAE’s

SSPC 135, which
is responsible for
the BACnet stan-

dard.

Control Networks

and

Interoperability

time, is intended for humans
who need to access data from
machines. The idea of one ma-
chine calling up another to re-
quest a Web page containing
some piece of information,
rather than asking for the infor-
mation directly using a standard
protocol, is simply misguided.

INTEROPERABILITY
DEFINED

Interoperability is the ability of
equipment to work together. In a
networked world, this implies the
ability of the equipment to com-
municate mutually. It doesn’t re-
ally matter what the purpose of
the equipment is. The “interoper-
ation” can be between different
manufacturers’ control equip-
ment, different versions of control
equipment from the same manu-
facturer, equipment intended for
different purposes such as fire
alarm, lighting control, intrusion
detection, and HVAC—the point
is the equipment has to be able to
communicate to interoperate.

How is this communication ac-
complished? It’s simple, at least in
concept. The communicating de-

vices have to use a common set of
communication rules—a com-
mon “protocol.” While I would ar-
gue that the use of a standard pro-
tocol is by far the best approach,
interoperability, strictly speaking,
only requires that the devices we
want to work together use the
same protocol. Of course we can
reasonably expect to find more de-
vices that use the same protocol if
it is a standard protocol.

UNDERSTANDING
“PROTOCOL”

Essentially, a protocol consists
of two parts: a message, and a
way to get the message where it

needs to go (Figure 1). The con-
tent and format of the message
depend on the cooperating ap-
plication. For example, if the ap-
plication involves transferring
files, then both machines have to
understand information related
to file size, file type, position of
the data in the file, and so on. If
the application involves HVAC,
the machines have to understand
binary and analog inputs, out-
puts, values, schedules, alarms,
etc. For every type of interopera-
ble application, there has to be a
corresponding application mes-
sage protocol that defines the se-
mantics, or the meaning of the

NETWORKED CONTROLS

3

FIGURE 1.
A “protocol” can
be thought of as
having two
fundamental
parts: a message
and a means to
transport it.

A Protocol's two main parts

Application message
Transport

Application
Provides communication services to the user's application program.

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Negotiates message format, converts codes, encrypts/decrypts.

Establishes checkpoints and quality of service parameters.

Establishes logical circuits and routes messages between two machines.

Controls communication of blocks or "packets" of data.

Transmits and receives individual bits on the physical medium.

Physical medium between the two machines.

Performs end-to-end error checking.

Network user 1 Network user 2

FIGURE 2. The ISO/OSI Seven-Layer Model arranges communication functions into seven groups or “layers.” Each
layer provides services locally to the layer above while communicating with its peer layer in the remote device.
Protocols that implement the model need only select the functions needed for the application at hand.

NETWORKED CONTROLS

single layer, e.g., message segmen-
tation and reassembly (a method
of breaking up long messages and
putting them back together again
in the right order), although this
would be inefficient.

•Not all the functions of all
the layers are always needed.
Many control system protocols
only implement the Physical,
Data Link, and Application lay-
ers. Some add a Network layer
protocol if wide-area communi-
cation or communication be-
tween different local area net-
work (LAN) types is required.

BUILDING AUTOMATION
EXAMPLE

With these points in mind,
let’s look at a couple of examples
that show how the theory relates
to the real world. I will use two
application layer protocols—
BACnet and HTTP—to make
the points. I selected BACnet be-
cause it is the only protocol in the
world that has been developed
exclusively to promote interoper-
ability in building automation
and controls applications. I
picked HTTP because it is at the
core of the World Wide Web and
I want to show how building
control protocols and the Web
can work together.

Look at Figure 3. The two sets
of vertical blocks represent appli-
cation and communication func-
tions in two networked ma-
chines. The blocks on the left are
in a “workstation” and the blocks
on the right are in a “controller.”
At the application level, a work-
station program (e.g., a graphic
display generator) wants to ob-
tain the value of a “point” known
to the direct digital controller
(DDC), say a temperature value,
so it can display it to the opera-
tor. The horizontal bi-directional
arrow between the top blocks
shows that, conceptually, the
workstation and DDC software
are communicating directly with
each other.

In reality, the workstation
software accesses the communi-
cation protocol stack by invok-
ing a procedure that is provided
by the protocol stack’s applica-

4

data, and the syntax, or the
method of formatting it.

The rules governing the
“transport” component of a pro-
tocol cover a vast multitude of is-
sues that must be agreed upon.
Among these are:
• Physical issues, such as the type

of cable, connectors, electrical
or optical signaling

• The type of “addressing” that
uniquely identifies each ma-
chine on the network

• Error checking of various types
• Data security
• Data compression
• Rules related to interconnect-

ing multiple physical net-
works; and many more.

ISO/OSI SEVEN-LAYER
MODEL

Fortunately, these transport is-
sues have been around since the
beginning of networking and
have received intense attention
from networking specialists. One
result is the Open Systems Inter-
connection Basic Reference
Model (BRM), developed within
the International Organization
for Standardization (ISO) in
1984, and published as Standard
ISO 7498. The BRM takes all of
the data communication issues
and arranges them in seven dis-

tinct groups or “layers” (Figure 2).
The BRM model is intended to

provide a conceptual framework
that protocol designers can use to
implement communication tech-
nologies. The resultant set of pro-
tocols is called a “protocol stack”
because the protocols are hierar-
chically arranged, one on “top” of
the other. The layers can also be
useful for helping to focus a dis-
cussion of the various communi-
cation issues. Here are several im-
portant points about the model:

• Each layer provides commu-
nications services to the layer im-
mediately above. As long as the
interface between layers is pre-
served, specific implementations
can be replaced without affecting
the overall communication.

• Each layer communicates
with its peer in the destination
machine via a protocol. Also,
each layer adds protocol control
information (PCI), which adds
to the overhead of each imple-
mented layer.

• The functions of each layer
can be implemented in separate,
distinct protocols, but don’t have
to be. It is entirely possible to im-
plement the functions of several
layers in a single protocol. Con-
versely, several protocols may im-
plement a function defined for a

F E A T U R E

FIGURE 3. A
workstation and
digital controller
that use
BACnet/IP
as their native
application
protocol via an
Ethernet LAN
would have this
protocol stack
implementation.

Application

OSI
Seven-layer

model

Presentation

Data link

Physical

Session

Transport

Network

Network

Protocol
stack

Application
program

BACnet/IP

BACnet
request

BACnet
response

Ethernet

Workstation
software

DDC
software

UDP

IP

BACnet/IP

Ethernet

UDP

IP

BACnet
response

BACnet
request

NETWORKED CONTROLS

5

tion programming interface
(API). The vertical arrow desig-
nated “BACnet Request” indi-
cates this interaction. The re-
quest actually contains many
parameters including the ad-
dress of the destination machine
(or information that can be used
to figure it out, such as its
“name”), the service requested
(in this case, ReadProperty, the
BACnet message that asks for
the value of a “property” of a
BACnet “object”), and other
data necessary for the message to
be assembled. This information
is encoded by the BACnet/IP
software into a bunch of zeros
and ones, using the rules in the
BACnet standard and passed
down to the User Datagram Pro-
tocol (UDP) software. Again,
the horizontal two-headed arrow
shows the BACnet/IP imple-
mentations in the two machines
are conceptually communicat-
ing between each other.

The UDP simply sends blocks
of data (called datagrams) to a
destination. The protocol con-
trol information (PCI) that is
added to the data, in this case the
BACnet/IP message, is just a
source and destination port
number (a numeric value that in-
dicates the protocol immediately
above in the stack), and a num-
ber indicating the length (in 8-
bit bytes), of the message data.

Unlike the Transmission Con-
trol Protocol (TCP) that we will
discuss shortly, UDP is “connec-
tionless,” meaning there is no
concept of a sequence of related
data messages or even of an ac-
knowledgment for the current
message. For this reason, UDP is
considered “unreliable.” The
datagrams are simply sent out
and if they arrive at their destina-
tion, great, if not, too bad!

If UPD isn’t reliable, then why
is it so widely used? Because other
protocols in the stack can make
up for its deficiencies. This is an
important point because it illus-
trates one of the basic concepts in
this whole protocol stacking busi-
ness: When designing a stack, the
trick is to ensure that all necessary
capabilities are provided, but not

more often than necessary. For ex-
ample, if every protocol in the
stack needed to ensure the end-
to-end reliability of its data, the
network would soon get bogged

down in superfluous traffic be-
cause each protocol would be
sending acknowledgments of its
own packets, all of which contain
the same embedded application
message. In our example, the
BACnet protocol provides the
needed overall reliability by re-
quiring acknowledgments from
the destination’s BACnet imple-
mentation. If no acknowledg-
ment is received, the protocol re-
tries the transmission or takes
other actions such as notifying an
operator of the problem.

Continuing down the stack,
the UDP “packet” (the BAC-
net/IP message with the UDP
port numbers and length) is
passed as data along with an IP
address and other PCI to the IP
protocol, which in turn sends it
to the Ethernet driver, which ac-
tually puts it out on the wire in
accordance with Ethernet’s rules.
At the destination, the reverse se-
quence is followed until the mes-
sage arrives and is processed by
the DDC application, which
generates a BACnet response
that is returned to the requester
in a similar fashion (Figure 4).

WEB BROWSING EXAMPLE
A Web browsing application

works in a completely analogous
way (Figure 5). The Web
browser sends a request for a
Web page to the HTTP proto-
col implementation via its API.
HTTP then builds an applica-
tion message (Figure 1) that
consists of a command, such as
“get,” followed by a Web page
address (e.g., www.hpac.com).
The latest version of HTTP
(1.1) also supports a large num-
ber of command qualifiers. An
example is “If-Modified-Since”
followed by a date and time.
This is sent if a version of the
Web page has already been
found in the local machine’s
“cache” or archive to reduce
traffic on the network if the
page has not been changed since
the last time it was accessed.

Once formed, the HTTP
message is passed to TCP. TCP,
in contrast to UDP, is “connec-
tion-oriented.” This means that

BACnet request
(ReadProperty,
Analog input 1,
Present value)

Destination B/IP
address

(UDP port = X'BAC0'
IP Addr = 128.253.245.72)

+ B/IP PCI

Destination UDP port
(X'BAC0')
+ UDP PCI

Destination IP address
(128.253.245.72)

+ IP PCI

Destination Ethernet address
(60-2B-7E-44-3A-16)

+ Ethernet PCI

Network

FIGURE 4. Each protocol in the stack
can be thought of as an envelope
whose data comes from the
protocol above. Notice how the
envelopes get bigger as protocol
control information (PCI) is added
to the envelope from above. Each
“envelope” actually consists of
a string of bytes containing the PCI
and the data payload. At the
destination, a BACnet Response is
formed that contains, hopefully,
the Present Value of Analog Input 1
and is returned in a similar manner.

NETWORKED CONTROLS

tablished by exchanging several
messages to synchronize se-
quence numbers and to negoti-
ate other communication pa-
rameters needed by TCP. As the
packets are transmitted, the re-
ceiving TCP protocol periodi-
cally acknowledges the receipt of
the packets by sending a message
to the sender that indicates the
sequence number of the most re-
cently received packet. This way,
the sender can be assured that all
packets up to that number have
been correctly received.

Nevertheless, establishing the
connection, acknowledging the
packets, and terminating the
connection after the data have
been transferred take time and
bandwidth. Thus, the fact that
TCP is “reliable” comes at a cost
and does not always justify its use
if other protocols in the stack are
available to ensure the commu-
nication’s integrity.

Again, the TCP packet with
its HTTP payload is passed
down to IP, from there to Ether-
net and, eventually, to its desti-
nation where, hopefully, the re-
quested Web page is located,
formatted according to HTTP

6

each message has a “sequence
number” added to it so that a
data stream whose length exceeds
that of a single network packet
can be broken into pieces and re-
assembled later on. This can eas-
ily happen with Web pages,

where a single embedded image
might be 100 kilobytes long but
is being passed over Ethernet,
whose maximum packet size is
only about 1.5 kilobytes.

To achieve this, a link to the
remote peer TCP protocol is es-

F E A T U R E

FIGURE 5. A Web
browser

communicating
with a Web server

on an office LAN
typically uses

these protocols.
For wide-area

communication,
the browser and
server would be

connected by the
infrastructure of

the Internet by
means of routers
attached to their
individual LANs.

The browser
could also have

data link and
physical layer
protocols that

make use of
modem

communications
instead of

Ethernet.

Application

OSI
Seven-layer

model

Presentation

Data link

Physical

Session

Transport

Network

Network

Protocol
stack

Application
program

HTTP

HTTP
request

HTTP
response

Ethernet

Web
browser

Web
server

TCP

IP

HTTP

Ethernet

TCP

IP

HTTP
response

HTTP
request

FIGURE 6. A Web browser that accesses an appropriately programmed Web server can perform the same kind of
functions as the dedicated workstation in Figure 3.

Network

Protocol
stack

Application
program

BACnet
request

BACnet
response

Ethernet

Workstation
software

DDC
software

IP

BACnet/IP

Ethernet

UDP

BACnet/IP

UDP

IP

Ethernet

IP

HTTP
response

HTTP
request

Web
server

HTTP

TCP

HTTP
request

HTTP
response

Web
browser

HTTP

TCP

BACnet
response

BACnet
request

NETWORKED CONTROLS

7

rules, and begins its journey
back to the requester, very
likely as a sequence of num-
bered TCP packets.

WEB BROWSERS AS
WORKSTATIONS

What about using browser
technology to implement a con-
trol system workstation? This is
a great concept, at least in prin-
ciple, because it means that vir-
tually any PC with an Internet
connection can provide work-
station capability without any
software beyond a standard,
low-cost Web browser. How-
ever, there is no free lunch—the
work still has to get done some-
where! There has to be a Web
server that also implements the
desired workstation functional-
ity (alarming, trending, sched-
ule maintenance, graphic dis-
plays, etc.) , and it has to
be able to communicate with
the control system equipment
in the field.

Figure 6 shows how this
works in terms of protocols. The
middle device is the Web
server/control system gateway.
Note how the upper layer proto-
cols happily coexist and make
use of the common IP and Eth-
ernet capabilities. To see how
the concept works in terms of
hardware, see Figure 7.

The most important thing to
understand is the interaction
between the “Web Server”/
“Workstation Software” blocks
at the top-middle of Figure 6.
The Web server has received,
let’s say, a request for a graphic
containing some f ie ld I/O
point value. This request must
be passed to the workstation
software which in turn builds
(in this case) a BACnet/IP re-
quest, sends it out, gets the re-
sponse, and passes i t to the
Web server. Here the data must
be converted to a pr intable
character string in HTML for-
mat and then, finally, returned
to the Web browser for display.
The software that l inks the
server and workstation capabil-
ities will depend on the imple-
mentation and will almost cer-

tainly be proprietary. This is
what you pay for when you buy
a Web server capable of talking
with a control system.

DESIGNING INTER-
OPERABLE SYSTEMS

Here are some steps that can
lead to achieving interoperable
systems:

1. Figure out exactly which
systems must communicate and
what data needs to be communi-
cated; define the application.

2. Select equipment that per-
forms the desired functions and
supports a common, preferably
standard, application protocol.

3. For equipment that does
not support the common pro-
tocol directly, determine if gate-
ways are available between the
equipment’s protocol and your
selected common protocol. If
no gateways exist, it may be
possible to provide some addi-
tional hardware in the form of
sensors or relays to equipment
that is networked to achieve the
needed monitoring and/or con-
trol functions.

4. Determine your operator-
machine interface needs. Are
workstations needed and what
capabilities must be available? Is
remote, off-site access required?
If so, is a Web server/gateway

available that can communicate
to the field equipment using
your selected common protocol?

5. Finally, make sure you,
your system designer, or con-
trols contractor understands
the network architecture well
enough to lay out the ground
rules for all participants to fol-
low in setting up their equip-
ment. These rules apply to such
things as network and device
numbering, ass ignment of
alarm priorities, assignment of
command priorities for differ-
ent applications (energy man-
agement, smoke purge, night
ventilation, lighting control,
etc.), conventions for setting
up trend logs, schedules, and so
on. (If you choose BACnet,
you can refer to the National
Inst i tute of Standards and
Technology’s Internal Report
6392 [NISTIR 6392] GSA
Guide to Specifying Interoper-
able Building and Control Sys-
tems Using ANSI/ASHRAE
Standard 135-1995, BACnet.
This guide was developed for
the U.S. General Services Ad-
ministration [GSA] to provide
suggestions about how to ap-
proach setting up these ground
rules. It is available from NIST
at www.nis t .gov , or f rom
www.bacnet.org).

BACnet
workstation

BACnet/IP

BACnet/IP

BACnet/IP over Ethernet BACnet/IP

HTTP

HTTP

Web
browser

Web
server

HVAC HVAC HVAC Fire Lighting Security

Internet

FIGURE 7. Putting
it all together:
A PC with
dedicated
workstation
software and
another PC with
only a Web
browser can both
perform
”workstation“
functions but the
browser requires
a specialized
Web server that
does the work
otherwise
performed in the
dedicated PC.

NETWORKED CONTROLS

ignore the unassailable fact that
interoperability requires, first
and foremost, agreement among
the participants on which tech-
nology to use; almost any tech-
nology could, in principle, be
made to work. The questions,
then, are which one is best
suited to the specific application
at hand, and how do you get an
industry to agree? The second
question is much harder to an-
swer than the first. NC

8

IN CLOSING
At the beginning of this arti-

cle, I mentioned several other
acronyms including Java,
CORBA, and OPC. These are
yet other ways of skinning the
communication cat. They all
provide mechanisms for com-
municating with “objects”
(structured collections of infor-
mation) in ways that shield the
application program from hav-
ing to know the details of where

the objects reside on the network
or how they are to be accessed.

However, to reiterate, the
work of defining the objects and
setting up the protocol infras-
tructure—doing the work that
the various standards bodies
such as ASHRAE have been do-
ing for years—must sti l l be
done. The notion that these and
other new technologies are
somehow the “holy grail” of
data communications seems to

F E A T U R E

ASCII. ANSI X3.4—1977, American Standard Code
for Information Interchange.

API. Application Programming Interface. A set of
functions or procedures that an application program
can “call” to access the underlying communication
protocol stack.

BACnet. ANSI/ASHRAE Standard 135, BACnet, A
Data Communication Protocol for Building Automa-
tion and Control Networks (www.bacnet.org).

CORBA. Common Object Request Broker Architecture
(www.corba.org).

Ethernet. ISO/IEC 8802-3. The most common high-
performance peer-to-peer LAN protocol in use today.

HTML. Hypertext Markup Language. A text-based
language for creating platform-independent informa-
tion display pages. HTML is one of the cornerstones of
the World Wide Web (www.w3.org/MarkUp).

HTTP. Hypertext Transfer Protocol. The protocol used
by the World Wide Web to request and receive data in
the form of HTML pages (www.w3.org/Protocols).

I/O. Input/Output. Connections between a computer
and sensors and actuators.

IP. The Internet Protocol. A network layer protocol
originally created by the Defense Advanced Re-
search Project Agency to facilitate data communica-
tion between the U.S. Defense Department and de-
fense contractors, including universit ies and
manufacturers (www.ietf.org).

Java. A programming language often used to write
functional extensions to Web browsers.

LAN. Local Area Network. A network in which all de-

vices can communicate directly without going
through intervening routers.

LON. Local Operating Network. A proprietary hard-
ware and software technology that can be used
for building control and other suitable device-level
applications.

MS/TP. Master-Slave/Token-Passing LAN. One of
the data link layers created specifically for use with
BACnet messages.

OPC. Object Linking and Embedding (OLE) for Pro-
cess Control (www.opcfoundation.org).

OSI. Open Systems Interconnection. A set of ISO
standards including the Basic Reference Model
(BRM).

PCI. Protocol Control Information. Parameters such as
address, length, hop count, segmentation parameters,
quality of service, and protocol identifiers that are
used by protocol implementations to process the ac-
companying data.

RS-232. “Recommended Standard” 232 of the Elec-
tronic Industries Association (now called EIA-232) that
specifies the Interface Between Data Terminal Equip-
ment and Data Communication Equipment Employing
Serial Binary Data Interchange.

TCP. Transmission Control Protocol. A connection-
oriented protocol used to convey multiple related
messages (e.g., f i le transfers, Web pages, etc.)
(www.ietf.org).

UDP. User Datagram Protocol. A connectionless pro-
tocol usually used to convey single blocks of unre-
lated data or “datagrams.” (www.ietf.org).

XML. eXtensible Markup Language (www.w3.org/XML).

GLOSSARY

