
[BIBB-001] [6/18/97]

BACnet Interoperability Building Blocks

Following up on the discussions in Philadelphia, I would like to submit the
following proposal for a way we might address the increasingly critical need of
consulting engineers for a simple, understandable methodology for specifying
interoperable BACnet systems. It has become clear to everyone by now that having
standard objects and services is necessary but, by itself, insufficient to ensure
interoperability. It is likewise insufficient to merely prescribe groups of objects and
services. What is needed is to define how specific combinations of BACnet objects
and services are to be used together to achieve various commonly understood and
desired functions. To some extent, this runs counter to the long-asserted mantra
that the SPC (SSPC) was never going to tell anyone how to "make their system
work." But the inescapable fact is that it is precisely a specification of "how things
work" that is required to make systems interoperable. Needless to say, the pie can
be sliced in many ways. I look forward to many carefree, idyllic hours of debate on
just how we are going to do the slicing so that everyone can amicably live with
their slice(s)... Please pass the whipped cream.

Here are my assumptions:

1) It is unimportant what we call the following prescriptions but we need to clearly
distinguish them from the current conformance class and functional groups. I
previously suggested the designation "BACnet Operational Groups (BOGs)" but
perhaps "BACnet Profiles (BPs)", "BACnet Configuration Specifications (BCSs)"
or "BACnet Interoperability Building Blocks (BIBBs)" would be better -- or
something entirely different. Let your imagination run wild - just like we did when
we picked "BACnet" itself out of all the various possibilities that had been
dreamed up. (ASHnet anyone?) The important thing is to define them. Then we
can figure out what to call them. Let's call them BIBBs for now.

2) It is critical that each BIBB be named in such a way that it is obvious to
consultants with only a knowledge of the desired result to which function it
pertains. Thus, the BIBBs must have simple names like "Alarm Management" or
"Scheduling".

3) The "black box" concept needs to be implemented. A consultant should be able
to use language like "Each supplied device shall implement the BACnet
capabilities contained in the 'Scheduling (xxx)' and 'Alarm Management (xxx)'
BIBBs." (I'll get to (xxx) in a moment.) It is up to us to define how each BIBB
applies to different types of BACnet devices so that manufacturers know what is
expected when a specification comes along. Since the terms "client" and "server"

[BIBB-001] [6/18/97]

seem to confuse people, I propose, for now at least, to use the terms "Workstation"
and "Field Panel." In general, these terms, understood by everyone, convey the
intended idea. Naturally, in hierarchical systems, there will be times when a field
panel may be a client to a lower-level server. In such cases, I would like to propose
that we use the terms "Provider" and "User". See, for example, Point Sharing.

4) The nub of our problem, of course, is that many functions can be carried out in
more than one way using the capabilities that BACnet provides. This is not an
accident of nature. SPC 135P knew that there exists a range of product capabilities
and that there is always the possibility of reducing the number of "bytes on the
wire" by imposing a greater requirement for processing power. The question that
then arises is "how do we describe BAC functions in terms of this range of
processing power?" We could talk about "Less Powerful" and "More Powerful".
We could use terms like "Basic" and "Advanced". Or "Basic" and "Enhanced". Or
"Standard" and "High Performance", etc., etc. The problem is that none of these
terms really mean anything to a consultant. "Advanced" compared to what? What
good is "More Powerful" in my application?

It finally occurred to me that maybe the best way out of this mess is again to use
terms that anyone can understand: "Small System" and "Large System" (= (xxx)
above) . Properly described, I think these terms actually capture the spirit of what
most of us on SPC 135P had in mind when we talked about performance issues. A
"small" device tended to be equated with a device without much processing power;
the proverbial "dirtball controller." Similarly, a "small" system was thought of as a
system with few nodes, thus not requiring high bandwidth or sophisticated
processing to accomplish real work. In a like manner, "large" has always been
associated with lots of processing power, many nodes, or both. In any event, this is
the model I think we should explore.

5) Another issue is the number of gradations for any given BIBB. With just two
descriptors, "Small System" and "Large System," there would be only two sets of
capabilities. Some BIBBs may only need one. Some might need more. I would
suggest, in the interest of simplicity, that we keep it to two initially. As will be seen
below, this seems to work well for most of the BIBBs I have tried to define. In any
case, let the debate begin.

The following BIBBs have been drafted:

• Alarm Management (Small System, Large System)
• Closed Loop Control (Small System, Large System)
• Event Logging (Small System, Large System)

[BIBB-001] [6/18/97]

• Event Sharing (Small System, Large System)
• Graphics (Small System, Large System)
• Point Sharing (Small System, Large System)
• Remote Configuration
• Scheduling (Small System, Large System)
• Trend Logging (Small System, Large System)

Each BIBB is described in terms of a Name, Purpose, Required Services, Required
Objects, and Explanation.

6) Finally, it must be noted that what is presented here only addresses one side of
this issue. The description of each BIBB in terms of the BACnet capabilities
required to implement it is intended to convey to implementers what they need to
provide when they see a certain BIBB in a job specification. The other side of the
issue is to communicate to specifiers, i.e., consulting engineers, when the use of a
particular BIBB is appropriate.

If you study the following BIBBs you will see that there are two types. In one type,
the large system model simply adds functionality that the small system model does
not offer. For example, in Closed Loop Control (Small System) the Loop object
properties have the access attributes as specified in the standard, i.e., they are at
most read-only (although writable at an implementer's discretion). In Closed Loop
Control (Large System) some of the properties are required to be writable, an
extension to the standard. A specifier can make a judgment on which BIBB to
specify based on the expected impact that parameter writability would have on the
application and the additional cost, if any, of the enhanced capability.

The second type of BIBB describes two distinct ways of achieving the same end
result. The difference is network efficiency. These kinds of BIBBs can be
compared quantitatively using the same technique as is always used to compare
computer system performance: benchmarks. Let me give an example.

Suppose we want to compare the Graphics (Small System) and Graphics (Large
System) BIBBs. As described below, the small system model uses ReadProperty to
gather the data for display; the large system model uses as one possibility the COV
mechanism. Given a benchmark, we can compute the number of bytes to display
the graphic using each mechanism and thus have a comparison of the relative
efficiency, expressed in terms of bytes-on-the-wire for each approach.

Here is a sample benchmark (if you don't like this one create your own; in fact
maybe the CCFG WG should create a range of them...):

[BIBB-001] [6/18/97]

Number of data points in the graphic: 10 (assume analog points)
Maximum screen update interval: 5 seconds
Length of time graphic is running: 60 seconds
Rate of COV-triggerable events: 10 events/minutes

With these benchmark parameters we can now easily compute how many
application layer octets are required by each BIBB (if you want to add in the data
link and network layer octets, be my guest):

Graphics (Small System)

Each point must be read every 5 seconds. Since the graphic runs for one minute,
there will be 12 sets of 10 readings, i.e., 120 ReadProperty transactions.

octets for ReadProperty: 11
octets or ComplexACK: 17
octets per transaction (11+17): 28

octets for the graphic (120*28): 3360

Graphics (Large System)

Here we must first issue 10 SubscribeCOV requests. Assume the Issue Confirmed
Notifications parameter (2 octets) is omitted (we only need Unconfirmed
Notifications for a graphic) and the Lifetime parameter = 0 for indefinite lifetime.

octets for 10 SubscribeCOVs: 130
octets for 10 SimpleACKs: 30
octets for 10 initial UnconfirmedCOVNotifications: 270
octets for 10 more COV notifications during graphic: 270
octets to cancel 10 COV subs at graphic shutdown: 110

octets for the graphic (sum of the above): 810

Thus, for this benchmark, the large system model uses only about one quarter the
number of bytes to produce essentially the same result, a 4 to 1 advantage.

So when should a specifier call for one BIBB as opposed to the other? It comes
down to analyzing a job's bandwidth situation. If there are only a few controllers
but the network is fast, say Ethernet, the small system model will probably work

[BIBB-001] [6/18/97]

fine. If, however, there are many controllers, the possibility of other high priority
traffic (not related to the operator's graphics), and the network is slower, say
ARCNET, the large system model would seem a better specification. In either case,
the BIBBs tell a prospective supplier exactly what BACnet capabilities are
required. The specifying engineer still has to make some engineering judgments
based on a knowledge of the proposed network but that is exactly what the owner
is paying him/her for! And with clearly defined - and specifiable alternatives - the
calculations are relatively straightforward (which, as stated above, we should
probably do as a service to the specifier community).

Here are thumbnail sketches of the BIBBs.

Alarm Management (Small System, Large System)

These BIBBs require implementation of the event notification services. Intrinsic
reporting is assumed at a minimum. The small BIBB assumes that the workstation
maintains the alarm acknowledgment history (equivalent to the Acked_Transitions
property of Event Enrollment objects or objects that support intrinsic reporting)
and the current alarm state (equivalent to the Event_State property, likewise of
such objects). For the small system BIBB no alarm acknowledgment function is
required at the field panel level. The large BIBB assumes that the field panel
maintains the alarm acknowledgment history and alarm state. AcknowledgeAlarm
is also required. Large system field panels may do algorithmic reporting in lieu of
intrinsic reporting. They may also do both, but they must do at least one. Note that
intrinsic reporting requires support of the Notification Class object. Thus both the
small and large BIBBs require this object.

Obviously, one could imagine a scenario where the alarm mechanism is entirely
workstation-initiated, i.e., the workstation goes out, reads some properties, does
some calculations and decides there is an alarm. Systems are, of course, free to do
this but since this does not make use of the services intended by the SPC to
perform the alarm management function they should not be able to claim that they
do "Alarm Management" as defined in these BIBBs.

Closed Loop Control (Small System, Large System)

For the small system, only ReadProperty is required for the observing the
properties of the required read-only Loop object. In the large system, certain
properties of the Loop object are required to be writable and both Read- and
WriteProperty are required for the manipulation of the Loop object's properties.

[BIBB-001] [6/18/97]

Event Logging (Small System, Large System)

The small system BIBB assumes a workstation-based solution but the autonomous
generation of event notifications by the field panels. The workstation does all the
logging.

Besides performing the notifications required above, the large system field panel
also logs the events to a local file. The File object type and the AtomicReadFile
service are required so that the workstation can read the log file. The large field
panel must also support GetEnrollmentSummary and, if algorithmic reporting is
present, the EventEnrollment object type.

Note that the event logging BIBBs will be significantly altered if and when we
reach consensus on a Log object type or agree on a log file format.

Event Sharing (Small System, Large System)

Event sharing for small systems just means the use of the event notification
services. Here is an instance where "workstation" is not as good a term as "user"
and "field panel" is not as good as "provider" so I've used the latter terms.

Large system devices must also support GetEnrollmentSummary.

Graphics (Small System, Large System)

Small system graphics is the simplest BIBB of all. The workstation just uses
ReadProperty to gather data for display.

In the large system BIBB I have required support of the COV mechanism as well
as the dynamic creation of Group objects. These things were put in the standard for
a good reason: this is it!

Point Sharing (Small System, Large System)

Small system point sharing requires the user of the point data to initiate
ReadProperty service requests and providers to execute them, i.e., send back the
data.

I think for large systems, point sharing should be implemented using the COV
services.

[BIBB-001] [6/18/97]

Remote Configuration

This one makes me a little queasy. I have specified use of the VT services. Maybe
we should just offer a choice to implementers: as long as they use BACnet to do
the job, they conform. Thus, they could use their choice of the VT, PrivateTransfer,
or file access services, or a combination thereof. The point is that the configuration
is done over the network using BACnet services.

Scheduling (Small System, Large System)

Small systems need to support the Schedule and Calendar objects, the basic
property access services, and the TimeSynchronization service. Large systems add
the capability to define Command objects.

Trend Logging (Small System, Large System)

Similar to event logging, the small system BIBB is workstation-based. The
workstation uses ReadProperty to read values, then files them. In the large system,
the field panel files the values and these are then read as a file by the workstation.

Again, adoption of a Log object type would fundamentally change the large system
BIBB.

And now, for your entertainment and reflection, the BIBBs...

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Alarm Management (Small
System)

This BACnet interoperability building block provides for alarm management in
small systems.

X.1 Required Services

Table X-1. Alarm Management (Small System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ConfirmedEventNotification x x
UnconfirmedEventNotification x x
GetAlarmSummary x x

X.2 Required Objects

Table X-2. Alarm Management (Small System) Required Objects
BACnet Objects Workstation Field Panel

NotificationClass x

In addition, each field panel claiming support of "Alarm Management (Small
System)" shall implement one or more objects that provide "intrinsic reporting" as
described in 13.2.

X.3 Explanation

In "Alarm Management (Small System)" the management of alarms is
predominantly a workstation function. The field panels support the generation of
alarms through the "intrinsic reporting" technique, but they are not required to
maintain acknowledgment status information since acknowledgments are not
required. It is entirely the responsibility of the workstation to keep track of which
alarms are defined, where they reside, and their current status. If operator
acknowledgment is provided, it is strictly an internal workstation function that
does not require communication with the field panel. Upon workstation startup,
each workstation shall synchronize its alarm database by issuing a
GetAlarmSummary service request to each field panel from which it wishes to
receive subsequent alarm status change information.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Alarm Management (Large
System)

This BACnet interoperability building block provides for alarm management in
large systems.

X.1 Required Services

Table X-1. Alarm Management (Large System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ConfirmedEventNotification x x
UnconfirmedEventNotification x x
GetAlarmSummary x x
GetEnrollmentSummary x x
AcknowledgeAlarm x x

X.2 Required Objects

Table X-2. Alarm Management (Large System) Required Objects
BACnet Objects Workstation Field Panel

NotificationClass x
EventEnrollment (Algorithmic
Reporting)

 x

Each field panel claiming support of "Alarm Management (Large System)" shall
implement one or more objects that provide "intrinsic reporting" as described in
13.2. If a field panel also supports "algorithmic change reporting" as described in
13.3, then implementation of the EventEnrollment object type is also required.

X.3 Explanation

In "Alarm Management (Large System)" the management of alarms is a more
cooperative activity than in "Alarm Management (Small System)." The field panels
support the generation of alarms through the "intrinsic reporting" technique and
may, optionally, support "algorithmic change reporting." In the latter case,
EventEnrollment objects are required. The field panels maintain acknowledgment
status information as needed by their application and the workstation is expected to
acknowledge alarm receipt upon request. Upon workstation startup, each
workstation shall synchronize its alarm database by issuing a GetAlarmSummary

[BIBB-001] [6/18/97]

service request to each field panel from which it wishes to receive subsequent
alarm status change information.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Closed Loop Control (Small
System)

This BACnet interoperability building block for small systems enables
communication related to closed loop control algorithms that can be mapped to the
BACnet Loop object type.

X.1 Required Services

Table X-1. Closed Loop Control (Small System) Required Services

 Workstation Field Panel
BACnet Service Initiate Execute Initiate Execute

ReadProperty x x

X.2 Required Objects

Table X-2. Closed Loop Control (Small System) Required Objects
BACnet Objects Workstation Field Panel

Loop x

X.3 Explanation

"Closed Loop Control" provides the capability to monitor the operation of closed
loop analog control algorithms that can be modeled using the BACnet Loop object
type. This includes conventional P, PI, and PID control. Note that all properties of
the Loop object are read-only.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Closed Loop Control (Large
System)

This BACnet interoperability building block for large systems enables
communication related to closed loop control algorithms that can be mapped to the
BACnet Loop object type.

X.1 Required Services

Table X-1. Closed Loop Control (Large System) Required Services

 Workstation Field Panel
BACnet Service Initiate Execute Initiate Execute

ReadProperty x x
WriteProperty x x

X.2 Required Objects

Table X-2. Closed Loop Control Required Objects
BACnet Objects Workstation Field Panel

Loop x

To claim conformance to this BIBB, the following properties of the Loop object, at
a minimum, are required to be present and writable: Out_Of_Service,
Update_Interval, Setpoint_Reference, Setpoint, Action, Proportional_Constant,
Integral_Constant, Derivative_Constant, and Bias.

X.3 Explanation

"Closed Loop Control" provides the capability to monitor the operation of closed
loop analog control algorithms that can be modeled using the BACnet Loop object
type. This includes conventional P, PI, and PID control. The properties that are
required to be present and writable in X.2 are those typically used in control loop
tuning.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Event Logging (Small System)

This BACnet interoperability building block provides for event logging in small
systems.

X.1 Required Services

Table X-1. Event Logging (Small System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ConfirmedEventNotification x x
UnconfirmedEventNotification x x

X.2 Required Objects

Table X-2. Event Logging (Small System) Required Objects
BACnet Objects Workstation Field Panel

NotificationClass x
EventEnrollment (Algorithmic
Reporting)

 x

Each field panel claiming support of "Event Logging (Small System)" shall
implement one or more objects that provide "intrinsic reporting" as described in
13.2 or, if algorithmic reporting is implemented, one or more EventEnrollment
objects, or both.

X.3 Explanation

In "Event Logging (Small System)" the work of logging events is entirely a
workstation function. "Logging" for events means maintaining a file of information
that contains a record of the event and the time the event occurred. The occurrence
of the event is signaled by the receipt of either a confirmed or unconfirmed event
notification service request.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Event Logging (Large System)

This BACnet interoperability building block provides for event logging in large
systems.

X.1 Required Services

Table X-1. Event Logging (Large System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ConfirmedEventNotification x x
UnconfirmedEventNotification x x
GetEnrollmentSummary x x
AtomicReadFile x x

X.2 Required Objects

Table X-2. Event Logging (Large System) Required Objects
BACnet Objects Workstation Field Panel

NotificationClass x
EventEnrollment (Algorithmic
Reporting)

 x

File x

Each field panel claiming support of "Event Logging (Large System)" shall
implement one or more objects that provide "intrinsic reporting" as described in
13.2 or, if algorithmic reporting is implemented, one or more EventEnrollment
objects, or both. In addition, each field panel shall maintain one or more event log
files whose attributes are network visible by means of related File objects.

X.3 Explanation

In "Event Logging (Large System)" the field panels support the generation of event
notifications through either the "intrinsic reporting" technique or the "algorithmic
change reporting" technique, or both. In the case of algorithmic change reporting,
EventEnrollment objects are required. The capabilities of "Event Logging (Small
System)", where the work of logging events is entirely a workstation function, is
supplemented here by the addition of one or more log files that are maintained by
the field panel. The contents of the file(s) pointed to by the field panel's File
object(s) are accessible by means of the AtomicReadFile service.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Event Sharing (Small System)

This BACnet interoperability building block provides for event sharing in small
systems.

X.1 Required Services

Table X-1. Event Sharing (Small System) Required Services
 User Provider

BACnet Service Initiate Execute Initiate Execute
ConfirmedEventNotification x x
UnconfirmedEventNotification x x

X.2 Required Objects

Table X-2. Event Sharing (Small System) Required Objects
BACnet Objects User Provider

NotificationClass x

Each provider claiming support of "Event Sharing (Small System)" shall
implement one or more objects that provide "intrinsic reporting" as described in
13.2.

X.3 Explanation

"Event Sharing (Small System)" provides for the asynchronous distribution of
event notifications through the confirmed and unconfirmed event notification
services.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Event Sharing (Large System)

This BACnet interoperability building block provides for event sharing in large
systems.

X.1 Required Services

Table X-1. Event Sharing (Large System) Required Services
 User Provider

BACnet Service Initiate Execute Initiate Execute
ConfirmedEventNotification x x
UnconfirmedEventNotification x x
GetEnrollmentSummary x x

X.2 Required Objects

Table X-2. Event Sharing (Large System) Required Objects
BACnet Objects User Provider

NotificationClass x
EventEnrollment (Algorithmic
Reporting)

 x

Each provider claiming support of "Event Sharing (Large System)" shall
implement one or more objects that provide "intrinsic reporting" as described in
13.2. If a provider also supports "algorithmic change reporting" as described in
13.3, then implementation of the EventEnrollment object type is also required.

X.3 Explanation

In "Event Sharing (Large System)" the providers support the generation of event
notifications through the "intrinsic reporting" technique and may, optionally,
support "algorithmic change reporting." In the latter case, EventEnrollment objects
are required.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Graphics (Small System)

This BACnet interoperability building block enables the retrieval of any property
of any object for display on a workstation's graphic.

X.1 Required Services

Table X-1. Graphics (Small System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ReadProperty x x

X.2 Explanation

In "Graphics (Small System)" the graphically displayed data are updated entirely
by the action of the workstation. Thus, the sequence and rate of update are solely
dependent on the graphic application program in the workstation.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Graphics (Large System)

This BACnet interoperability building block enables the retrieval of any property
of any object for display on a workstation's graphic. This BIBB improves the
performance of graphics by eliminating communications overhead once a graphic
has been initiated.

X.1 Required Services

Table X-1. Graphics (Large System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ReadProperty x x
ReadPropertyMultiple x x
CreateObject x x
DeleteObject x x
SubscribeCOV x x
ConfirmedCOVNotification x x
UnconfirmedCOVNotification x x

X.2 Required Objects

Table X-2. Graphics (Large System) Required Objects
BACnet Objects Workstation Field Panel

Group x

X.3 Explanation

In "Graphics (Large System)" three optimization techniques are available.

The first simply uses ReadPropertyMultiple to read several properties at one time.

The second involves creating a Group object whose present value represents the
property values that are to be displayed. Any property of any object may be
referred to in this way. The graphic is updated by periodically reading the present
value of the Group object. Group objects have no preset lifetime. Thus this
technique is well-suited to situations where the same graphic is frequently desired.

The third technique is available for a limited set of properties of a limited set of
object types. See Table 13-1. SubscribeCOV messages are sent each time a graphic

[BIBB-001] [6/18/97]

is initiated and are maintained for the lifetime of the graphic. Once initiated, such
graphics make optimal use of the network since no communication occurs unless
and until a COV has taken place. It is the workstation's responsibility to cancel all
outstanding COV subscriptions when the graphic display is terminated. This
technique is particularly suited to situations where it is desired to leave a graphic
on display for extended periods of time without placing a load on the network or
where the graphic is not expected to be used with great frequency. An example is a
graphic depicting the elements of a control loop which is periodically tuned over
the network.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Point Sharing (Small System)

This BACnet interoperability building block enables point data, i.e., a property of a
particular object, to be shared by virtue of its value being available via the
ReadProperty service. Such objects could represent shared points such as a
common outdoor air temperature sensor, a binary input representing a globally
significant contact closure, and so on.

X.1 Required Services

Table X-1. Point Sharing (Small System) Required Services
 User Provider

BACnet Service Initiate Execute Initiate Execute
ReadProperty x x

X.2 Required Objects

No objects are required except the one whose property or properties are to be made
available for shared use.

X.3 Explanation

In "Point Sharing (Small System)" common values of interest are made available
by means of the ReadProperty service initiated by the device desiring to share the
point information.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Point Sharing (Large System)

This BACnet interoperability building block enables the subscription to, and
distribution of, changes of values of any object that supports COV notification.
Such objects could represent shared points such as a common outdoor air
temperature sensor, a binary input representing a globally significant contact
closure, and so on.

X.1 Required Services

Table X-1. Point Sharing Required Services
 User Provider

BACnet Service Initiate Execute Initiate Execute
SubscribeCOV x x
ConfirmedCOVNotification x x
UnconfirmedCOVNotification x x

X.2 Required Objects

Each field panel claiming support of "Point Sharing" shall implement at least one
instance of one of the following standard object types that supports COV reporting
as indicated in Table 13-1, namely, Analog Input, Analog Output, Analog Value,
Binary Input, Binary Output, Binary Value, Multi-state Input, or Multi-state
Output, or Loop.

X.3 Explanation

In "Point Sharing" common values of interest are made available by means of the
COV subscription and notification services. [Perhaps we should define "Point
Sharing (Provider)" and "Point Sharing (Subscriber)" BIBBs to differentiate
between those panels that offer sharing as opposed to those that only make use of
shared values from others.]

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Remote Configuration

This BACnet interoperability building block provides for the remote configuration
of devices using the virtual terminal services.

X.1 Required Services

Table X-1. Alarm Management (Small System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
VT-Open x x
VT-Close x x
VT-Data x x x x

X.2 Explanation

While device configuration activities are generally outside the scope of BACnet,
support of "Remote Configuration" allows a workstation to communicate with a
field panel in virtual terminal mode and thus to potentially access a configuration
application on the remote device.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Scheduling (Small System)

This BACnet interoperability building block provides for scheduling of time
related activities in small systems.

X.1 Required Services

Table X-1. Scheduling (Small System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ReadProperty x x
WriteProperty x x
TimeSynchronization x x

X.2 Required Objects

Table X-2. Scheduling (Small System) Required Objects
BACnet Objects Workstation Field Panel

Calendar x
Schedule x

X.3 Explanation

"Scheduling (Small System)" provides the capabilities needed to allow a
workstation to inspect and modify the properties of Calendar and Schedule objects
used by a field panel to control its network-visible time-related activities. In
addition, the time-of-day clock in the field panel is synchronized by use of
TimeSynchronization service requests issued by the workstation.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Scheduling (Large System)

This BACnet interoperability building block provides for scheduling of multiple
time related activities in large systems.

X.1 Required Services

Table X-1. Scheduling (Large System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ReadProperty x x
WriteProperty x x
TimeSynchronization x x

X.2 Required Objects

Table X-2. Scheduling (Large System) Required Objects
BACnet Objects Workstation Field Panel

Calendar x
Command x
Schedule x

X.3 Explanation

"Scheduling (Large System)" provides the capabilities needed to allow a
workstation to inspect and modify the properties of Calendar and Schedule objects
used by a field panel to control its network-visible time-related activities. The
time-of-day clock in the field panel is synchronized by use of
TimeSynchronization service requests issued by the workstation. In addition, each
field panel claiming to support this BIBB shall also support the Command object
type.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Trend Logging (Small System)

This BACnet interoperability building block provides for trend logging in small
systems.

X.1 Required Services

Table X-1. Trend Logging (Small System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ReadProperty x x

X.2 Required Objects

Each field panel claiming support of "Trend Logging (Small System)" shall
implement at least one instance of one of the following standard object types:
Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary
Value, Multi-state Input, or Multi-state Output.

X.3 Explanation

In "Trend Logging (Small System)" the work of logging trend data is entirely a
workstation function. "Logging" of trend data means maintaining a file of periodic
readings of some property of some object. The property is read at the discretion of
the workstation using the ReadProperty service.

[BIBB-001] [6/18/97]

X BACnet Interoperability Building Block: Trend Logging (Large System)

This BACnet interoperability building block provides for trend logging in large
systems.

X.1 Required Services

Table X-1. Trend Logging (Large System) Required Services
 Workstation Field Panel

BACnet Service Initiate Execute Initiate Execute
ReadProperty x x
AtomicReadFile x x

X.2 Required Objects

Table X-2. Trend Logging (Large System) Required Objects
BACnet Objects Workstation Field Panel

File x

In addition to one or more File objects, each field panel claiming support of "Trend
Logging (Large System)" shall implement at least one instance of one of the
following standard object types: Analog Input, Analog Output, Analog Value,
Binary Input, Binary Output, Binary Value, Multi-state Input, or Multi-state
Output.

X.3 Explanation

In "Trend Logging (Large System)" the ability of the workstation to log trend data
is supplemented by the addition of one or more trend log files that are maintained
by the field panel. The contents of the file(s) pointed to by the field panel's File
object(s) are accessible by means of the AtomicReadFile service. "Logging" of
trend data means maintaining a file of periodic readings of some property of some
object.

