
B8 BACne t ® Today | A Supp lemen t t o ASHRAE Jou rna l November 2005

By Duffy O’Craven

At the bits and bytes level, data in BACnet packets on the wire

obey some very specifi c rules so the receiver can glean the

intent of the sender. Most of these rules are simple, and the code

for any BACnet protocol stack thoroughly exercises most cases.

However, the occurrence of certain conditions could execute incor-

rect code. This article sheds light on one such situation.

Those of you who envision data octets
on the wire in BACnet are probably famil-
iar with an arrangement such as:

and for length of 5 or higher

Implementation of a decoder for this
arrangement, to decompose the content to
its constituent parts, might look like:
v o i d s h o w _ h e a d _
unsigned(unsigned int

offset, int tagval)
{
 int len = pif_get_
 byte(offset-1)&0x07;

 unsigned long value =
 get_bac unsigned(offset,
 len);

 // get_bac_unsigned()
 internally handles all
 length cases
}
Actually, a special case exists in the

specification, in clauses 20.2.1.2 and
20.2.1.3.1, ever since its earliest days,
specifying a different arrangement for con-
text-specifi c tag numbers 15 or higher:

and for length of 5 or higher with a con-
text-specifi c tag number 15 or higher:

© 2005, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Reprinted by permission from
ASHRAE Journal, (Vol. 47, No. 11, November 2005). This article may not be copied nor distributed in either paper or digital form without
ASHRAE’s permission.

November 2005 ASHRAE Jou rna l B9

In this case an additional intervening
byte exists between the L/V/T octet and
the start of Extended Length or start of
data. offset-1 and offset do not
have the same relationship, and the call
to get_bac_unsigned() will fail to
decode the content correctly. The code
excerpt shown above didn’t see it coming
and isn’t prepared for it.

Many implementations of BACnet en-
coders and decoders have probably been
developed without any cognizance of this
arrangement. Programmers had no reason
to write the code for these special cases.
No instances of context-specifi c tag num-
ber 15 or higher are declared anywhere in
the BACnet specifi cation. Until now.

A proposal recently considered by the
Objects and Services working group of

Standing Standards Project Committee
135, BACnet®—A Data Communication ®—A Data Communication ®

Protocol for Building Automation and
Control Networks (WG-OS) advocates
declaring six additional context tagged
choices in the BACnetPropertyStates
production in Clause 21 for data types
used in properties within the standard.
Three of these properties’ data types were
overlooked in the original declaration of
the BACnetPropertyStates production, and
three others are property data types added
in addenda to the standard since 1995:

• action [15] BACnetAction;
• maintenance [16] BACnetMainte-

nance;
• notify-type [17] BACnetNotifyType;
• silenced-state [18] BACnetSilenced-

State;
• life-safety-operation [19] BAC-

netLifeSafetyOperation; and
• fi le-access-method [20] BACnetFile-

AccessMethod.
This would be the fi rst occurrence in

the standard of a production in Clause
21 declaring a context tag number 15
or higher.

Some BACnet protocol encoders and
decoders can be expected to have errors
in their implementations, regarding a
context tag number 15 or higher.

Nonetheless, this rather innocuous and
superfl uous change in the standard may
be the best time to bring that to light,
rather than awaiting the day some other
amendment to extend a complex pro-
duction such as BACnetEventParameter
or BACnetNotifi cationParameters also
eventually forces the use of a context tag
number 15 or higher.

All of this is very rigorous, very pre-
dictable—unless you don’t see it coming
and aren’t prepared for it. For example,
to correctly code the previous situation,
simply make the modifi cation shown in
bold:

v o i d s h o w _ h e a d
unsigned(unsigned int
offset, int tagval)

{

 int len = pif_get_
 byte(offset-1)&0x07;

See Context Tagging, Page B46

B46 BACne t ® Today | A Supp lemen t t o ASHRAE Jou rna l November 2005

int tag4bits = pif_get_byte(offset-
 1)&0xF0;

 unsigned long value;

 // get_bac_unsigned() internally
 handles all length cases

 value = get_bac_unsigned(offset + (15
 == tag4bits ? 1:0), len);

}

There is no need to await the fate of the BACnetPropertyS-
tates production amendment. The different arrangement for
context-specifi c tag numbers 15 or higher is already in the
standard and has been ever since its earliest days.

To implement a correct and complete BACnet decoder, the
code for these special cases must be provided. Even if there
are no instances of a context tag declaration 15 or higher
used in standard properties, the use of a context tag number
15 or higher has always been permissible in a proprietary
property value. The proper encoding for it is and always has
been defi ned.

This particular situation, an additional intervening byte after
the Length octet, is particularly pernicious, because, if this
situation is ignored, not just the interpretation of the current
item of data is disrupted, but the length of this item and start
of the next item is miscalculated. Everything that follows in
the decode of the packet will be garbled.

Shifting everything by 1 byte, or pulling the length out of
the wrong byte brings on a world of trouble. This could even
cause the decode for the next item to start in the middle of
something in such a way that it appears valid, but is mistaken,
yet no fault or fl aw is reported. Tracking down that error will
point in a completely wrong direction.

The implementer of a BACnet sending encoder is likely
to notice this issue and make correct provision for it, since
although a context tag number 15 can fi t in 4 bits, any num-
ber higher than that takes 5, 6, 7 or 8 bits. Finding where to
place the larger value will send the implementer scurrying to
the fi ne print of the standard for the correct encoding, since
it can’t fi t in 4 bits. A receiving decoder implementer, on the
other hand, might never expect a context-specifi c tag number
15 or higher, never make provision for it, and never be able
to decode any packet containing it. One must anticipate it to
code for it.

In the data of Confi rmed or Unconfi rmedEventNotifi cation-
Request, Confi rmed or Unconfi rmedCOVNotifi cation-Request,
and in ReadPropertyMultiple-ACK are the most likely places
for this situation to occur. Can you really live with a garbled
decode of those packets on the receiving end when this situation
occurs? The best time to check through and revise implementa-
tion code, if any correction is needed, is now.

Duffy O’Craven is a software consultant for Quinda in
Toronto.

Context Tagging, From Page B9

Advertisement formerly in this space.

